Russian version English version
Volume 16   Issue 1   Year 2021
Fialko N.S., Olshevets M.M., Lakhno V.D.

Equilibrium Charge Distribution in a Finite Chain with a Trapping Site

Mathematical Biology & Bioinformatics. 2021;16(1):152-168.

doi: 10.17537/2021.16.152.

References

  1. Modern Methods for Theoretical Physical Chemistry of Biopolymers. Eds. Starikov E., Tanaka S., Lewis J. Amsterdam: Elsevier Scientific, 2006. 604 p. doi: 10.1016/B978-0-444-52220-7.X5062-X
  2. Polarons in Advanced Materials. Ed. Alexandrov A. Springer; 2007. 672 p. (Springer Series in Materials Science; V. 103). doi: 10.1007/978-1-4020-6348-0
  3. Nanobioelectronics – for Electronics, Biology, and Medicine. Eds. Offenhäusser A., Rinaldi R. New York: Springer, 2009. 337 p. doi: 10.1007/978-0-387-09459-5
  4. Seeman N.C. Nanotechnology and the double helix. Sci. Am. 2004;290(6):64-9, 72-5. doi: 10.1038/scientificamerican0604-64
  5. Charge migration in DNA. Perspectives from physics, chemistry, and biology. Ed. Chakraborty T. Berlin: Springer; 2007. 288 p. doi: 10.1007/978-3-540-72494-0
  6. Long-Range Charge Transfer in DNA II. Ed. Schuster G.B. Topics in Current Chemistry;237. Springer; 2004. 245 p. doi: 10.1007/b14032
  7. Conwell E.M. Charge transport in DNA in solution: The role of polarons. PNAS USA. 2005;102(25):795–8799. doi: 10.1073/pnas.0501406102
  8. Davydov A.S. The theory of contraction of proteins under their excitation. J. Theor. Biology. 1973;38:559–569. doi: 10.1016/0022-5193(73)90256-7
  9. Su W.P., Schrieffer J.R. Soliton dynamics in polyacetylene. PNAS USA. 1980;77(10):5626–5629. doi: 10.1073/pnas.77.10.5626
  10. Landau L.D., Lifshitz E.M. Quantum Mechanics. Non-relativistic Theory. Elsevier; 1977. (Course of Theoretical Physics, V. 3).
  11. Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Physics. 1959;8(3):325–342. doi: 10.1016/0003-4916(59)-90002-8
  12. Kalosakas G., Rasmussen K., Bishop A. Charge trapping in DNA due to intrinsic vibrational hot spots. J. Chem. Phys. 2003;118(8):3731–3735. doi: 10.1063/1.1539091
  13. Qu Z., Kang D., Jiang H., Xie S. Temperature effect on polaron dynamics in DNA molecule: The role of electron-base interaction. Physica B. 2010;405:S123–S125. doi: 10.1016/j.physb.2009.12.020
  14. Patwardhan S., Tonzani S., Lewis F., Siebbeles L., Schatz G., Grozema F. Effect of structural dynamics and base pair sequence on the nature of excited states in DNA hairpins. J. Phys. Chem. B. 2012;116:11447–11458. doi: 10.1021/jp307146u
  15. Lomdahl P.S., Kerr W.C. Do Davydov solitons exist at 300K? Phys. Rev. Lett. 1985;55(11):1235–1238. doi: 10.1103/PhysRevLett.55.1235
  16. Helfand E. Brownian dynamics study of transitions in a polymer chain of bistable oscillators. J. Chem. Phys. 1978;69(3):1010–1018. doi: 10.1063/1.436694
  17. Lakhno V.D., Fialko N.S. On the dynamics of a polaron in a classical chain with finite temperature. Journal of Experimental and Theoretical Physics. 2015;120(1):125-131. doi: 10.7868/S0044451015010125
  18. Fialko N.S., Sobolev E.V., Lakhno V.D. On the calculation of thermodynamic quantities in the Holstein model for homogeneous polynucleotides. Journal of Experimental and Theoretical Physics. 2017;124(4):635-642. doi: 10.1134/S1063776117040124
  19. Greenside H.S., Helfand E. Numerical integration of stochastic differential equations - II. Bell System Technical Journal. 1981;60:1927–1940. doi: 10.1002/j.1538-7305.1981.tb00303.x
  20. Holstein T. Studies of polaron motion: Part II. The “small” polaron. Annals of Physics. 1959;8(3):343–389. doi: 10.1016/0003-4916(59)90003-X
  21. Voityuk A.A., Rösch N., Bixon M., Jortner J. Electronic coupling for charge transfer and transport in DNA. J. Phys. Chem. B. 2000;104(41):9740–9745. doi: 10.1021/jp001109w
  22. Jortner J., Bixon M., Voityuk A.A., Röcsh N. Superexchange mediated charge hopping in DNA. J. Phys. Chem. A. 2002;106(33):7599–7606. doi: 10.1021/jp014232b
  23. Lewis F.D., Wu Ya. Dynamics of superexchange photoinduced electron transfer in duplex DNA. J. Photochem. Photobiol. C. 2001;2(1):1–16. doi: 10.1016/S1389-5567(01)00008-9
  24. Chandrasekhar S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 1943;15:1. doi: 10.1103/RevModPhys.15.1
  25. Yakushevich L.V. Nonlinear Physics of DNA. Wiley; 1998.
  26. Fialko N.S., Lakhno V.D. Numerical Simulation of Small Radius Polaron in a Chain with Random Perturbations. Mathematical Biology and Bioinformatics. 2019;14(1):126–136 (in Russ.). doi: 10.17537/2019.14.126
  27. Cheng K.C., Cahill D.S., Kasai H., Nishimura S., Loeb L.A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J. Biol. Chem. 1992;267(1):166–172. doi: 10.1016/S0021-9258(18)48474-8
  28. Fialko N., Pyatkov M., Lakhno V. On the thermodynamic equilibrium distribution of a charge in a homogeneous chain with a defect. EPJ Web of Conferences. 2018;173. Article No. 06004. doi: 10.1051/epjconf/201817306004

 

Table of Contents Original Article
Math. Biol. Bioinf.
2021;16(1):152-168
doi: 10.17537/2021.16.152
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024