Russian version English version
Volume 16   Issue 2   Year 2021
Andrianov A.M.1, Yushkevich A.M.2, Bosko I.P.2, Karpenko A.D.2, Kornoushenko Yu.V.1, Furs K.V.2, Tuzikov A.V.2

Design and Identification of Potential HIV-1 Entry Inhibitors Using In Silico Click Chemistry and Molecular Modeling Methods

Mathematical Biology & Bioinformatics. 2021;16(2):317-334.

doi: 10.17537/2021.16.317.

References

  1. Wang H.B., Mo Q.H., Yang Z. HIV vaccine research: The challenge and the way forward. J. Immunol. Res. 2015;2015. Article ID 503978. doi: 10.1155/2015/503978
  2. Mann J.K., Ndung’u T. HIV-1 vaccine immunogen design strategies. Virol. J. 2015;12(3). doi: 10.1186/s12985-014-0221-0
  3. Corti D., Lanzavecchia A. Broadly neutralizing antiviral antibodies. Ann. Rev. Immunol. 2013;31:705–742. doi: 10.1146/annurev-immunol-032712-095916
  4. Arts E.J., Hazuda D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med. 2012;2:a007161. doi: 10.1101/cshperspect.a007161
  5. Kumari G., Singh R.K. Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario. HIV & AIDS Rev. 2012;11:5–14. doi: 10.1016/j.hivar.2012.02.003
  6. MacArthur R.D., Novak R.M. Maraviroc: The first of a new class of antiretroviral agents. Clin. Infect. Dis. 2008;47:236–241. doi: 10.1086/589289
  7. Matthews T., Salgo M., Greenberg M., Chung J., DeMasi R., Bolognesi D. Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat. Rev. Drug Discov. 2004;3:215–225. doi: 10.1038/nrd1331
  8. Bettiker R.L., Koren D.E., Jacobson J.M. Ibalizumab. Curr. Opin. HIV AIDS. 2018;13(4):354–358. doi: 10.1097/COH.0000000000000473
  9. Rizza S.A., Bhatia R., Zeuli J., Temesgen Z. Ibalizumab for the treatment of multidrug-resistant HIV-1 infection. Drugs Today (Barc). 2019;55(1):25–34. doi: 10.1358/dot.2019.55.1.2895651
  10. Blair H.A. Ibalizumab: A Review in multidrug-resistant HIV-1 infection. Drugs. 2020;80(2):189–196. doi: 10.1007/s40265-020-01258-3
  11. Kozal M., Aberg J., Pialoux G., Cahn P., Thompson M., Molina J.-M., Grinsztejn B., Diaz R., Castagna A., Kumar P., Latiff G., DeJesus E., et al., for the BRIGHTE Trial Team. Fostemsavir in adults with multidrug-resistant HIV-1 infection. N. Engl. J. Med. 2020;382:1232–1243. doi: 10.1056/NEJMoa1902493
  12. Chahine E.B. Fostemsavir: The first oral attachment inhibitor for treatment of HIV-1 infection. Am. J. Health Syst. Pharm. 2021;78(5):376–388. doi: 10.1093/ajhp/zxaa416
  13. Lai Y.-T. Small molecule HIV-1 attachment inhibitors: Discovery, mode of action and structural basis of inhibition. Viruses. 2021;13:843. doi: 10.3390/v13050843
  14. Kwong P.D., Mascola J.R., Nabel G.J. The changing face of HIV vaccine research. J. Int. AIDS Soc. 2012;15:17407. doi: 10.7448/IAS.15.2.17407
  15. Huang J., Ofek G., Laub L., Louder M.K., Doria-Rose N.A., Longo N.S., Imamichi H., Bailer R.T., Chakrabarti B., Sharma S.K., Alam S.M., Wang T., Yang Y., Zhang B., Migueles S.A., Wyatt R., Haynes B.F., Kwong P.D., Mascola J.R., Connors M. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature. 2012;491:406–412. doi: 10.1038/nature11544
  16. Kashyn I.A., Tuzikov A.V., Andrianov A.M. Identification of Novel Potential Inhibitors of the HIV-1 gp41 Protein by Virtual Screening and Molecular Modeling Methods. Mathematical Biology and Bioinformatics. 2015;10(2):325–343. doi: 10.17537/2015.10.325
  17. Andrianov A.M., Kashyn I.A., Tuzikov A.V. Potential HIV-1 fusion inhibitors mimicking gp41-specific broadly neutralizing antibody 10E8: In silico discovery and prediction of antiviral potency. J. Bioinform. Comput. Biol. 2018;4(4):1022. doi: 10.1142/S0219720018400073
  18. Xiao T., Frey G., Fu Q., Lavine C.L., Scott D. A., Seaman M.S., Chou J.J., Chen B. HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat. Chem. Biol. 2020;16:529–537. doi: 10.1038/s41589-020-0496-y
  19. Kolb H.C., Finn M.G., Sharpless K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chemie Int. Ed. 2001;40(11):2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  20. Sander T., Freyss J., von Korff M., Rufener C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015;55(2):460–473. doi: 10.1021/ci500588j
  21. Sterling T., Irwin J.J. ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model. 2015;55(11):2324–2337. doi: 10.1021/acs.jcim.5b00559
  22. Durrant J.D., McCammon J.A. AutoClickChem: Click chemistry in silico. PLoS Comput. Biol. 2012;8:e1002397. doi: 10.1371/journal.pcbi.1002397
  23. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26.
  24. Alhossary A., Handoko S.D., Mu Y., Kwoh C.K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics. 2015;31(13):2214–2216. doi: 10.1093/bioinformatics/btv082
  25. Wójcikowski M., Ballester P.J., Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 2017;7. Article No. 46710. doi: 10.1038/srep46710
  26. Shen C., Hu Y., Wang Z., Zhong H., Zhang H., Zhong H., Wang G., Yao X., Xu L., Cao D., Hou T. Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions. Brief. Bioinf. 2021;22(1):497–514. doi: 10.1093/bib/bbz173
  27. Case D.A., Belfon K., Ben-Shalom I.Y., Brozell S.R., Cerutti D.S., Cheatham III T.E., Kollman P.A. AMBER 2020. University of California, 2020.
  28. Genheden S., Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinity. Expert Opin. Drug Discov. 2015;10(5):449–461. doi: 10.1517/17460441.2015.1032936
  29. Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23(3):327–341. doi: 10.1016/0021-9991(77)90098-5
  30. Stewart J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013;19:1–32. doi: 10.1007/s00894-012-1667-x
  31. Sulimov A.V., Kutov D.C., Katkova E.V., Sulimov V.B. Combined docking with classical force field and quantum chemical semiempirical method PM7. Adv. Bioinf. 2017;5:1–6. doi: 10.1155/2017/7167691
  32. Klamt A. COSMO-RS: From quantum chemistry to fluid phase thermodynamics and drug design, 1st ed. Boston, MA, USA: Elsevier, 2005. 246 p.
  33. Klamt A., Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Transac. 1993;2:799–805. doi: 10.1039/P29930000799
  34. Durrant J.D., McCammon J.A. BINANA: A novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 2011;29(6):888–893. doi: 10.1016/j.jmgm.2011.01.004
  35. Durrant J.D., McCammon J.A. NNScore 2.0: A neural-network receptor–ligand scoring function. J. Chem. Inf. Model. 2011;51(11):2897–2903. doi: 10.1021/ci2003889
  36. Daina A., Michielin O., Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7. Article No. 42717. doi: 10.1038/srep42717
  37. Salzwedel K., West J.T., Hunter E.A. A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J. Virol. 1999;73(3):2469–2480. doi: 10.1128/JVI.73.3.2469-2480.1999
  38. Bellamy-McIntyre A.K., Lay C.-S., Bar S., Maerz A.L., Gert H., Talbo G.H., Heidi E., Drummer H.E., Poumbourios P. Functional links between the fusion peptide-proximal polar segment and membrane-proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion. J. Biol. Chem. 2007;282:23104–23116. doi: 10.1074/jbc.M703485200
Table of Contents Original Article
Math. Biol. Bioinf.
2021;16(2):317-334
doi: 10.17537/2021.16.317
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2022