Russian version English version
Volume 16   Issue 2   Year 2021
Astakhova T.Yu., Vinogradov G.A.

Polarons on Dimerized Lattice of Polyacetilene. Continuum Approximation

Mathematical Biology & Bioinformatics. 2021;16(2):335-348.

doi: 10.17537/2021.16.335.


  1. Kausar A. Review on structure, properties and appliance of essential conjugated polymers. American Journal of Polymer Science & Engineering. 2016;4:91-102.
  2. Ziadan K.M. Conducting Polymers Application. In: New Polymers for Special Applications. Ed. Ailton De Souza Gomes. Brazil: Federal University of Rio de Janeiro, 2012. doi: 10.5772/3345
  3. Ravichandran R., Sundarrajan S., Venugopal J.R., Mukherjee Sh., Ramakrishna S. Applications of conducting polymers and their issues in biomedical engineering. J. R. Soc. Interface. 2010;7. P. S559. doi: 10.1098/rsif.2010.0120.focus
  4. Heeger A.J. Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials. Rev. Mod. Phys. 2001;73:681. doi: 10.1103/RevModPhys.73.681
  5. MacDiarmid A.G. Nobel Lecture "Synthetic metals": A novel role for organic polymers. Rev. Mod. Phys. 2001;73:707. doi: 10.1103/RevModPhys.73.701
  6. Shirakawa H. Nobel Lecture: The discovery of polyacetylene film - the dawning of an era of conducting polymers. Rev. Mod. Phys. 2001;73:713. doi: 10.1103/RevModPhys.73.713
  7. Lu N., Li L., Geng D., Liu M. A review for polaron dependent charge transport in organic semiconductor. Organic Electronics. 2018;61:223. doi: 10.1016/j.orgel.2018.05.053
  8. Su W.P., Schrieffer J.R., Heeger A.J. Solitons in polyacetylene. Phys. Rev. Lett. 1979;42:1698. doi: 10.1103/PhysRevLett.42.1698
  9. Su W.P., Schrieffer J.R., Heeger A.J. Soliton excitations in polyacetylene. Phys. Rev. B. 1980;22:2099. doi: 10.1103/PhysRevB.22.2099
  10. Meier E.J., An F.A., Gadway B. Observation of the topological soliton state in the Su-Schrieffer-Heeger model. Nat. Commun. 2016;7:13986. doi: 10.1038/ncomms13986
  11. Fathizadeh S., Behnia S. Charge and spin dynamics in DNA nanomolecules: Modeling and applications. In: 21st Century Nanoscience - A Handbook Bioinspired Systems and Methods; V. 7. Ed. Sattler K.D. Boca Raton: CRC Press, 2020. P. 12. doi: 10.1201/9780429351525-12
  12. Terai A., Ono Y. Phonons around a soliton and a solaron in Su-Schrieffer-Heeger’s model of trans-(CH)x. J. Phys. Soc. Japan. 1986;55:213. doi: 10.1143/JPSJ.55.213
  13. Ono Y., Terai A. Motion of charged soliton in polyacetylene due to electric field. J. Phys. Soc. Japan. 1990;59:2893. doi: 10.1143/JPSJ.59.2893
  14. Rakhmanova S.V., Conwell E.M. Nonlinear dynamics of an added carrier in trans-polyacetylene in the presence of an electric field. Synthetic Metals. 2000;110:37. doi: 10.1016/S0379-6779(99)00261-1
  15. Johansson A.A., Stafstr"om S. Soliton and polaron transport in trans-polyacetylene. Phys. Rev. B. 2002;65:045207. doi: 10.1103/PhysRevB.65.045207
  16. Johansson A.A., Stafstr"om S. Nonadiabatic simulations of polaron dynamics. Phys. Rev. B. 2004;69:235205. doi: 10.1103/PhysRevB.69.235205
  17. e Silva G.M. Electric-field effects on the competition between polarons and bipolarons in conjugated polymers. Phys. Rev. B. 2000;61:10777. doi: 10.1103/PhysRevB.61.10777
  18. Roncaratti L.F., Gargano R., e Silva G.M. Theoretical temperature dependence of the charge-carrier mobility in semiconducting polymers. J. Phys. Chem. A. 2009;113:14591. doi: 10.1021/jp9041759
  19. Ribeiro L.A., de Brito S.S., de Oliveira Neto P.H. Trap-assisted charge transport at conjugated polymer interfaces. Chem. Phys. Lett. 2016;644:121. doi: 10.1016/j.cplett.2015.12.006
  20. Sun S., Zhang Y., Liu X., An Z. Spectral analysis of polaron dynamics in conjugated polymers. Phys. Chem. C. 2019;123:28569. doi: 10.1021/acs.jpcc.9b07330
  21. Liu X.J., Gao K., Fu J.Y., Li Y., Wei J.H., Xie S.J. Effect of the electric field mode on the dynamic process of a polaron. Phys. Rev. B. 2006;74:172301. doi: 10.1103/PhysRevB.74.172301
  22. Ribeiro L.A. , da Cunha W.F., de Oliveria Neto P.H., Gargano R., e Silva G.M. Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons. New J. Chem. 2013;37:2829-2836. doi: 10.1039/c3nj00602f
  23. da Silva M.V.A., de Oliveira Neto P.H., da Cunha W.F., Gargano R., e Silva G.M. Supersonic quasi-particles dynamics in organic semiconductors. Chem. Phys. Let. 2012;550:146. doi: 10.1016/j.cplett.2012.09.012
  24. Astakhova T., Vinogradov G. New aspects of polaron dynamics in electric field. Eur. Phys. J. B. 2019;92:247. doi: 10.1140/epjb/e2019-100339-y
  25. Korshunova A.N., Lakhno V.D. Various regimes of charge transfer in a Holstein chain in a constant electric field depending on its intensity and the initial charge distribution. Math. Biology and Bioinformatics. 2018;7. Article No. e4. doi: 10.17537/icmbb18.89
  26. Chetverikov A.P., Ebeling W., Lakhno V.D., Shigaev A.S., Velarde M.G. On the possibility that local mechanical forcing permits directionally-controlled long-range electron transfer along DNA-like molecular wires with no need of an external electric field. Mechanical control of electrons. Eur. Phys. J. B. 2016;89:101. doi: 10.1140/epjb/e2016-60949-1
  27. Astakhova T., Vinogradov G. Single-electron model for polaron on dimerized lattice. Math. Biol. Bioinf. 2019;14:625. doi: 10.17537/2019.14.625
  28. Astakhova T., Vinogradov G. Subsonic and supersonic polarons in one-electron model of polyacetylene. Eur. Phys. J. B. 2020;93:127. doi: 10.1140/epjb/e2020-10113-7
  29. Astakhova T.Yu., Vinogradov G.A., Kashin V.A. Polaron in an electric field as a generator of coherent lattice vibrations. Rus. J. Phys. Chem. B. 2018;12(6):1. doi: 10.1134/S1990793118050147
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2021.16.335
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)


  Copyright IMPB RAS © 2005-2024