Russian version English version
Volume 16   Issue 2   Year 2021
Evgeniya Giricheva

Coexistence of the Three Trophic Levels in a Model with Intraguild Predation and Intraspecific Competition of Prey

Mathematical Biology & Bioinformatics. 2021;16(2):394-410.

doi: 10.17537/2021.16.394.


  1. May R.M. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science. 1974;186(4164):645–647. doi: 10.1126/science.186.4164.645
  2. Hassel M.P. The dynamics of arthropod predator-prey systems. Princeton: Princeton University Press, 1978.
  3. Anderson R.M., May R.M. Population biology of infectious diseases: Part I. Nature. 1979;280:361–367. doi: 10.1038/280361a0
  4. Turchin P. Complex population dynamics: a theoretical/empirical synthesis. Princeton: Princeton University Press, 2003.
  5. Freedman H.I., Waltman P. Persistence in models of three interacting predator-prey populations. Math. Bioscience. 1984;68(2):213–231. doi: 10.1016/0025-5564(84)90032-4
  6. Hastings A., Powell T. Chaos in a three–species food chain. Ecology. 1991;72(3):896–903. doi: 10.2307/1940591
  7. Hsu S.B., Hubbell S.P., Waltman P. A contribution to the theory of competing predators. Ecol. Monography. 1978;48(3):337–349. doi: 10.2307/2937235
  8. Krikorian N. The Volterra model for three species predator–prey systems: boundedness and stability. J. Math. Biol. 1979;7(2):117–132. doi: 10.1007/BF00276925
  9. Bazykin A.D. Mathematical biophysics of interacting populations. Moscow: Nauka, 1985 (in Russ.).
  10. Sze-Bi Hsu, Shigui Ruan, Ting-Hui Yang. Analysis of three species Lotka–Volterra food web models with omnivory. Journal of Mathematical Analysis and Applications. 2015;426(2):659–687. doi: 10.1016/j.jmaa.2015.01.035
  11. Holt R.D., Polis G.A. A Theoretical Framework for Intraguild Predation. American Naturalist. 1997;149:745–764. doi: 10.1086/286018
  12. Namba T., Tanabe K. Omnivory and stability of food webs. Ecological Complexity. 2008;5:73–85. doi: 10.1016/j.ecocom.2008.02.001
  13. Kang Y., Wedekin L. Dynamics of a intraguild predation model with generalist or specialist predator. Journal of Mathematical Biology. 2013;67(5):1227–1259. doi: 10.1007/s00285-012-0584-z
  14. Tanabe K., Namba T. Omnivory Creates Chaos in Simple Food Web Models. Ecology. 2005;86(12):3411–3414. doi: 10.1890/05-0720
  15. Abrams P., Fung S.R. Prey persistence and abundance in systems with intraguild predation and type-2 functional responses. Journal of Theoretical Biology. 2010;264(3):1033–1042. doi: 10.1016/j.jtbi.2010.02.045
  16. Kuijper L.D.J., Kooi B.W., Zonneveld C., Kooijman S.A.L.M. Omnivory and food web dynamics. Ecological Modelling. 2003;163:19–32. doi: 10.1016/S0304-3800(02)00351-4
  17. Křivan V., Diehl S. Adaptive omnivory and species coexistence in tri-trophic food webs. Theor. Popul. Biol. 2005;67:85–99. doi: 10.1016/j.tpb.2004.09.003
  18. Vandermeer J. Omnivory and the stability of food webs. Journal of Theoretical Biology. 2006;238:497–504. doi: 10.1016/j.jtbi.2005.06.006
  19. Zhang Guohong, Wang Xiaoli. Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response. Discrete and Continuous Dynamical Systems – B. 2018;23(9):3755–3786. doi: 10.3934/dcdsb.2018076
  20. Sentis A., Hemptinne J. L., Brodeur J. How functional response and productivity modulate intraguild predation. Ecosphere. 2013;4(4):46. doi: 10.1890/ES12-00379.1
  21. Holling C.S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 1965;45:5–60. doi: 10.4039/entm9745fv
  22. Sen D., Ghorai S., Banerjee M. Complex dynamics of a three species prey-predator model with intraguild predation. Ecological Complexity. 2018;34:9–22. doi: 10.1016/j.ecocom.2018.02.002
  23. Křivan V., Eisner J. The effect of the Holling type II functional response on apparent competition. Theoretical Population Biology. 2006;70(4):421–430. doi: 10.1016/j.tpb.2006.07.004
  24. Mylius S.D., Klumpers K., de Roos A.M., Persson L. Impact of intraguild predation and stage structure on simple communities along a productivity gradient. American Naturalist. 2001;158(3):259–276. doi: 10.1086/321321
  25. Castillo-Santos F.E., Rosa M.A.D., Loreto-Hernández I. Existence of a Limit Cycle in an Intraguild Food Web Model with Holling Type II and Logistic Growth for the Common Prey. Applied Mathematics. 2017;8:358–376. doi: 10.4236/am.2017.83030
  26. Denman K.L., Pena M.A. The response of two coupled one-dimensional mixed layer/planktonic ecosystem models to climate change in the NE subarctic Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography. 2002;49(24–25):5739–5757. doi: 10.1016/S0967-0645(02)00212-6
  27. Morozov A., Arashkevich E., Nikishina A., Solovyev K. Nutrient-rich plankton community stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity. Math. Med. Biol. 2011;28:185–215. doi: 10.1093/imammb/dqq010
  28. Edwards A.M., Brindley J. Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol. 1999;61:303–339. doi: 10.1006/bulm.1998.0082
  29. Kiørboe T. A Mechanistic Approach to Plankton Ecology. Princeton: Princeton University Press, 2008. doi: 10.1515/9780691190310
  30. Saiz E., Calbet A. Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia. 2011;666(1):181–196. doi: 10.1007/s10750-010-0421-6
  31. Franks P.J.S. Phytoplankton blooms in a fluctuating environment: the roles of plankton response time scales and grazing. J. Plankton Res. 2001;23:1433–1441. doi: 10.1093/plankt/23.12.1433
  32. Hansen B., Tande K.S., Berggreen U.C. On the trophic fate of Phaeocystis pouchetii (Hariot). III. Functional responses in grazing demonstrated on juvenile stages of Calanus finmarchicus (Copepoda) fed diatoms and Phaeocystis. J. Plankton Res. 1990;12:1173–1187. doi: 10.1093/plankt/12.6.1173
  33. Hall R.J. Intraguild Predation in the Presence of a Shared Natural Enemy. Ecology. 2011;92(2):352–361. doi: 10.1890/09-2314.1
  34. Hickerson C.M. Edge effects and intraguild predation in native and introduced centipedes: evidence from the field and from laboratory microcosms. Oecologia. 2005;146(1):110–119. doi: 10.1007/s00442-005-0197-y
  35. Diehl S., Feissel M. Effects of enrichment on three-level food chains with omnivory. Am. Nat. 2000;155:200–218. doi: 10.1086/303319
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2021.16.394
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024