Russian version English version
Volume 18   Issue 1   Year 2023
Fedorov V.A.1,2, Kholina E.G.2, Bulatov M.F.3,2, Kovalenko I.B.2,3,4

Design of a Molecular Dynamics Model for High-Performance Computing of Conformational Changes in Microtubule Protofilaments Associated with the Anticancer Drug Taxol

Mathematical Biology & Bioinformatics. 2023;18(1):105-112.

doi: 10.17537/2023.18.105.

References

  1. Páll S., Zhmurov A., Bauer P., Abraham M., Lundborg M., Gray A., Lundborg M., Gray A., Hess B., Lindahl E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 2020;153(13):134110. doi: 10.1063/5.0018516
  2. Fedorov V.A., Kholina E.G., Kovalenko I.B., Gudimchuk N.B. Performance analysis of different computational architectures: Molecular dynamics in application to protein assemblies, illustrated by microtubule and electron transfer proteins. Supercomput. Front. Innov. 2018;5(4):11–114. doi: 10.14529/jsfi180414
  3. Fedorov V.A., Kholina E.G., Kovalenko I.B., Gudimchuk N.B., Orekhov P.S., Zhmurov A.A. Update on Performance Analysis of Different Computational Architectures: Molecular Dynamics in Application to Protein-Protein Interactions. Supercomput. Front. Innov. 2020;7(4):62–67. doi: 10.14529/jsfi200405
  4. Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer. 2010;10(3):194–204. doi: 10.1038/nrc2803
  5. Jordan M.A., Wilson L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer. 2004;4(4):253–265. doi: 10.1038/nrc1317
  6. Fedorov V.A., Orekhov P.S., Kholina E.G., Zhmurov A.A., Ataullakhanov F.I., Kovalenko I.B., Gudimchuk N.B. Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability. PLoS Comput. Biol. 2019;15(8):e1007327. doi: 10.1371/journal.pcbi.1007327
  7. Alushin G.M., Lander G.C., Kellogg E.H., Zhang R., Baker D., Nogales E. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell. 2014;157(5):1117–1129. doi: 10.1016/j.cell.2014.03.053
  8. Webb B., Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics. 2016;54(1):5–6. doi: 10.1002/cpbi.3
  9. Olsson M.H.M., Søndergaard C.R., Rostkowski M., Jensen J.H. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J. Chem. Theory Comput. 2011;7(2):525–537. doi: 10.1021/ct100578z
  10. Morozenko A., Stuchebrukhov A.A. Dowser++, a new method of hydrating protein structures. Proteins. 2016;84(10):1347–1357. doi: 10.1002/prot.25081
  11. MacKerell A.D., Bashford D., Bellott M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102(18):3586–3616. doi: 10.1021/jp973084f
  12. MacKerell A.D. Jr., Feig M., Brooks C.L. Improved treatment of the protein backbone in empirical force fields. J. Am. Chem. Soc. 2004;126(3):698–699. doi: 10.1021/ja036959e
Table of Contents Original Article
Math. Biol. Bioinf.
2023;18(1):105-112
doi: 10.17537/2023.18.105
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2024