References
- Barzaman K., Karami J., Zarei Z., Hosseinzadeh A., Kazemi M.H., Moradi-Kalbolandi S., Safari E., Farahmand L. Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology. 2020;84:106535. doi: 10.1016/j.intimp.2020.106535
- Arnold M., Morgan E., Rumgay H., Mafra A., Singh D., Laversanne M., Vignat J., Gralow J.R., Cardoso F., Siesling S., et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast. 2022;66 doi: 10.1016/j.breast.2022.08.010
- Yao H., He G., Yan S., Chen C., Song L., Rosol T.J., Deng X. Triple-negative breast cancer: Is there a treatment on the horizon? Oncotarget. 2016;8. doi: 10.18632/oncotarget.12284
- Mustacchi G., De Laurentiis M. The role of taxanes in triple-negative breast cancer: Literature review. Drug Design, Development and Therapy. 2015;9:4303–4318. doi: 10.2147/DDDT.S86105
- Pennisi A., Kieber-Emmons T., Makhoul I., Hutchins L. Relevance of Pathological Complete Response after Neoadjuvant Therapy for Breast Cancer. Breast Cancer : Basic and Clinical Research. 2016;10. doi: 10.4137/BCBCR.S33163
- Saha T., Lukong K.E. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Frontiers in Oncology. 2022;12. doi: 10.3389/fonc.2022.856974
- Modi A., Roy D., Sharma S., Vishnoi J.R., Pareek P., Elhence P., Sharma P., Purohit P. ABC transporters in breast cancer: Their roles in multidrug resistance and beyond. Journal of Drug Targeting. 2022;30(9):927–947. doi: 10.1080/1061186X.2022.2091578
- Cui H., Zhang A.J., Chen M., Liu J.J. ABC Transporter Inhibitors in Reversing Multidrug Resistance to Chemotherapy. Current Drug Targets. 2022;16(12):1356–1371. doi: 10.2174/1389450116666150330113506
- Liu X. ABC Family Transporters. In: Drug Transporters in Drug Disposition, Effects and Toxicity. Eds.: Liu X., Pan G. Singapore: Springer, 2019. P. 13–100. doi: 10.1007/978-981-13-7647-4_2
- Pan H., Zheng Y., Pan Q., Chen H., Chen F., Wu J., Di D. Expression of LXR β, ABCA1 and ABCG1 in human triple negative breast cancer tissues. Oncology Reports. 2019;42(5):1869–1877. doi: 10.3892/or.2019.7279
- Chen J., Tang G. PIM-1 kinase: A potential biomarker of triple-negative breast cancer. OncoTargets and Therapy. 2019;12. doi: 10.2147/OTT.S212752
- Weng H.J., Tsai T.F. ABCB1 in dermatology: Roles in skin diseases and their treatment. Journal of Molecular Medicine. 2021;99:1527–1538. doi: 10.1007/s00109-021-02105-y
- Ding P., Gao Y., Wang J., Xiang H., Zhang C., Wang L., Ji G., Wu T. Progress and challenges of multidrug resistance proteins in diseases. Am. J. Cancer Res. 2022;12(10):4483–4501.
- Nedeljković M., Damjanović A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer – How We Can Rise to the Challenge. Cells. 2019;8(9):957. doi: 10.3390/cells8090957
- Goebel J., Chmielewski J., Hrycyna C.A. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: Future opportunities for structure-based drug design of inhibitors. Cancer Drug Resistance. 2021;4:784–804. doi: 10.20517/cdr.2021.19
- Wang J.Q., Wu Z.X., Yang Y., Teng Q.X., Li Y.D., Lei Z.N., Jani K.A., Kaushal N., Chen Z.S. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. Journal of Evidence-Based Medicine. 2021;14(3):232–256. doi: 10.1111/jebm.12434
- Fu Z., Wang L., Li S., Chen F., Au-Yeung K. K.W., Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Frontiers in Pharmacology. 2021;12:736323. doi: 10.3389/fphar.2021.736323
- O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9. doi: 10.3389/fendo.2018.00402
- Khalid O., Philippe L. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Frontiers in Oncology. 2021;11. doi: 10.3389/fonc.2021.708765
- Zhao W., Hu J.X., Hao R.M., Zhang Q., Guo J.Q., Li Y.J., Xie N., Liu L.Y., Wang P.Y., Zhang C., Xie S.Y. Induction of microRNA-let-7a inhibits lung adenocarcinoma cell growth by regulating cyclin D1. Oncology Reports. 2018;40(4):1843–1854. doi: 10.3892/or.2018.6593
- Ninio-Many L., Hikri E., Burg-Golani T., Stemmer S.M., Shalgi R., Ben-Aharon I. MiR-125a Induces HER2 Expression and Sensitivity to Trastuzumab in Triple-Negative Breast Cancer Lines. Frontiers in Oncology. 2020;10:191. doi: 10.3389/fonc.2020.00191
- Pekarsky Y., Croce C.M. Role of miR-15/16 in CLL. Cell Death and Differentiation. 2015;22:6–11. doi: 10.1038/cdd.2014.87
- Jiang R., Chen X., Ge S., Wang Q., Liu Y., Chen H., Xu J., Wu J. MiR-21-5p Induces Pyroptosis in Colorectal Cancer via TGFBI. Frontiers in Oncology. 2021;10. doi: 10.3389/fonc.2020.610545
- Karasek P., Gablo N., Hlavsa J., Kiss I., Vychytilova-Faltejskova P., Hermanova M., Kala Z., Slaby O., Prochazka V. Pre-operative Plasma miR-21-5p Is a Sensitive Biomarker and Independent Prognostic Factor in Patients with Pancreatic Ductal Adenocarcinoma Undergoing Surgical Resection. Cancer Genomics & Proteomics. 2018;15(4):321–327. doi: 10.21873/cgp.20090
- Sticht C., Torre C. D. L., Parveen A., Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10). Article No. e0206239. doi: 10.1371/journal.pone.0206239
- Chen Y., Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Research. 2020;48:D127–D131. doi: 10.1093/nar/gkz757
- McGeary S.E., Lin K.S., Shi C.Y., Pham T.M., Bisaria N., Kelley G.M., Bartel D.P. The biochemical basis of microRNA targeting efficacy. Science. 2019;366(6472). doi: 10.1126/science.aav1741
- Miranda K.C., Huynh T., Tay Y., Ang Y.S., Tam W.L., Thomson A.M., Lim B., Rigoutsos I. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell. 2006;126(6):1203–1217. doi: 10.1016/j.cell.2006.07.031
- Friedrich M., Vaxevanis C.K., Biehl K., Mueller A., Seliger B. Targeting the coding sequence: Opposing roles in regulating classical and non-classical MHC class I molecules by miR-16 and miR-744. Journal for Immunotherapy of Cancer. 2020;8(1):e000396. doi: 10.1136/jitc-2019-000396
- Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Research. 2019;47:D155–D162. doi: 10.1093/nar/gky1141
- Antczak M., Popenda M., Zok T., Sarzynska J., Ratajczak T., Tomczyk K., Adamiak R.W., Szachniuk M. New functionality of RNAComposer: Application to shape the axis of miR160 precursor structure. Acta Biochimica Polonica. 2016;63(4). doi: 10.18388/abp.2016_1329
- Biesiada M., Pachulska-Wieczorek K., Adamiak R.W., Purzycka K.J. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods. 2016;103:120–127. doi: 10.1016/j.ymeth.2016.03.010
- Parisien M., Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature. 2008;452:51–55. doi: 10.1038/nature06684
- Singh K.P., Gupta S. 3D Modeling of Non-coding RNA Interactions. In: Systems Biology of MicroRNAs in Cancer. Eds.: Schmitz U., Wolkenhauer O., Vera-González J. Springer, 2022. P. 281–317. doi: 10.1007/978-3-031-08356-3_11
- Yan Y., Tao H., He J., Huang S.Y. The HDOCK server for integrated protein–protein docking. Nature Protocols. 2020;15:1829–1852. doi: 10.1038/s41596-020-0312-x
- Yuan S., Chan H.C.S., Hu Z. Using PyMOL as a platform for computational drug design. WIREs Computational Molecular Science. 2017;7(2. Article No. e1298. doi: 10.1002/wcms.1298
- Dahuja A., Kumar R.R., Sakhare A., Watts A., Singh B., Goswami S., Sachdev A., Praveen S. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiologia Plantarum. 2021;171(4):785–801. doi: 10.1111/ppl.13302
- Liu R., Chen Y., Liu G., Li C., Song Y., Cao Z., Li W., Hu J., Lu C., Liu Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death & Disease. 2020;11(9). doi: 10.1038/s41419-020-02998-6
- Behl T., Kaur I., Sehgal A., Kumar A., Uddin Md. S., Bungau S. The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer’s Disease. Molecular Neurobiology. 2021;58(4):1564–1582. doi: 10.1007/s12035-020-02211-x
- Yu W., Lei Q., Yang L., Qin G., Liu S., Wang D., Ping Y., Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. Journal of Hematology & Oncology. 2021;14:187. doi: 10.1186/s13045-021-01200-4
- Ganesan M., Kanimozhi G., Pradhapsingh B., Khan H.A., Alhomida A.S., Ekhzaimy A., Brindha G.R., Prasad N.R. Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Biomedicine & Pharmacotherapy. 2021;139:111632. doi: 10.1016/j.biopha.2021.111632
- Mohi-ud-Din R., Mir R.H., Mir P.A., Banday N., Shah A.J., Sawhney G., Bhat M.M., Batiha G.E., Potoo F.H. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Current Drug Metabolism. 2022;23(9):735–756. doi: 10.2174/1389200223666220817115003
- Domenichini A., Adamska A., Falasca M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochimica et Biophysica Acta (BBA) - General Subjects. 2019;1863:52–60. doi: 10.1016/j.bbagen.2018.09.019
- Feyzizadeh M., Barfar A., Nouri Z., Sarfraz M., Zakeri-Milani P., Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: Lessons for drug discovery. Expert Opinion on Drug Discovery. 2022;17(9):1013–1027. doi: 10.1080/17460441.2022.2112666
- Xia M., Zu X., Chen Z., Wen G., Zhong J. Noncoding RNAs in triple negative breast cancer: Mechanisms for chemoresistance. Cancer Letters. 2021;523:100–110. doi: 10.1016/j.canlet.2021.09.038
- Zang J., Lu D., Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. Journal of Neuroscience Research. 2020;98:87–97. doi: 10.1002/jnr.24356
- Tang H., Ma M., Dai J., Cui C., Si L., Sheng X., Chi Z., Xu L., Yu S., Xu T., et al. MiR-let-7b and miR-let-7c suppress tumourigenesis of human mucosal melanoma and enhance the sensitivity to chemotherapy. Journal of Experimental & Clinical Cancer Research. 2019;38:212. doi: 10.1186/s13046-019-1190-3
- De Santis C., Götte M. The Role of microRNA Let-7d in Female Malignancies and Diseases of the Female Reproductive Tract. International Journal of Molecular Sciences. 2021;22(14):359. doi: 10.3390/ijms22147359
- Mohi-Ud-Din R., Mir R.H., Mir P.A., Banday N., Shah A.J., Sawhney G., Bhat M.M., Batiha G.E., Pottoo F.H. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr. Drug Metab. 2022;23(9):735–756. doi: 10.2174/1389200223666220817115003
- Valinezhad O.A., Safaralizadeh R., Kazemzadeh-Bavili M. Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. International Journal of Genomics. 2014;2014:970607. doi: 10.1155/2014/970607
- Yuan J.H., Li W.X., Hu C., Zhang B. Upregulation of SNHG12 accelerates cell proliferation, migration, invasion and restrain cell apoptosis in breast cancer by enhancing regulating SALL4 expression via sponging miR-15a-5p. Neoplasma. 2020;67(4):861–870. doi: 10.4149/neo_2020_190808N731
- Zhang H.Y., Liang H.X., Wu S.H., Jiang H.Q., Wang Q., Yu Z.J. Overexpressed Tumor Suppressor Exosomal miR-15a-5p in Cancer Cells Inhibits PD1 Expression in CD8+T Cells and Suppresses the Hepatocellular Carcinoma Progression. Frontiers in Oncology. 2021;11:622263. doi: 10.3389/fonc.2021.622263
- Zheng Y., Luo M., Lü M., Zhou T., Liu F., Guo X., Zhang J., Kang M. Let-7c-5p Inhibits Cell Proliferation and Migration and Promotes Apoptosis via the CTHRC1/AKT/ERK Pathway in Esophageal Squamous Cell Carcinoma. OncoTargets and Therapy. 2020;13:11193–11209. doi: 10.2147/OTT.S274092
- Fu X., Mao X., Wang Y., Ding X., Li Y. Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cancer. Oncology Reports. 2017;38(3):1851–1856. doi: 10.3892/or.2017.5839
- Wang C., Xue H., Zhao R., Sun Z., Gao X., Qi Y., Wang H., Xu J., Deng L., Li G. RGS16 regulated by let-7c-5p promotes glioma progression by activating PI3K-AKT pathway. Frontiers of Medicine. 2023;17:143–155. doi: 10.1007/s11684-022-0929-y
- Chirshev E., Oberg K.C., Ioffe Y.J., Unternaehrer J.J. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clinical and Translational Medicine. 2019;8(1):e24. doi: 10.1186/s40169-019-0240-y
- Zhang Y., Tie Q., Bao Z., Shao Z., Zhang L. Inhibition of miR-15a-5p Promotes the Chemoresistance to Pirarubicin in Hepatocellular Carcinoma via Targeting eIF4E. Computational and Mathematical Methods in Medicine. 2021;2021:6468405. doi: 10.1155/2021/6468405
- Muriithi W., Macharia L.W., Heming C.P., Echevarria J.L., Nyachieo A., Filho P.N., Neto V.M.. ABC transporters and the hallmarks of cancer: Roles in cancer aggressiveness beyond multidrug resistance. Cancer Biology & Medicine. 2020;17(2):253–269. doi: 10.20892/j.issn.2095-3941.2019.0284
- Hashemi S.M., Balouchi A., Al-Mawali A., Rafiemanesh H., Rezaie-Keikhaie K., Bouya S., Dehghan B., Farahani M.A. Health-related quality of life of breast cancer patients in the Eastern Mediterranean region: a systematic review and meta-analysis. Breast Cancer Research and Treatment. 2019;174:585–596. doi: 10.1007/s10549-019-05131-0
|
|
|