Russian version English version
Volume 18   Issue 1   Year 2023
Ban Hamid Khalaf1, Ahmed AbdulJabbar Suleiman2, Mohammed A. Suwaid3

In-silico Elucidation of the Role of ABC-Transporter Genes Expression Regulation by OncomiRs (miR-21, miR-15, and miR-let-7) in Drug Efflux and Chemoresistance in Breast Cancer

Mathematical Biology & Bioinformatics. 2023;18(1):128-144.

doi: 10.17537/2023.18.128.

References

  1. Barzaman K., Karami J., Zarei Z., Hosseinzadeh A., Kazemi M.H., Moradi-Kalbolandi S., Safari E., Farahmand L. Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology. 2020;84:106535. doi: 10.1016/j.intimp.2020.106535
  2. Arnold M., Morgan E., Rumgay H., Mafra A., Singh D., Laversanne M., Vignat J., Gralow J.R., Cardoso F., Siesling S., et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast. 2022;66 doi: 10.1016/j.breast.2022.08.010
  3. Yao H., He G., Yan S., Chen C., Song L., Rosol T.J., Deng X. Triple-negative breast cancer: Is there a treatment on the horizon? Oncotarget. 2016;8. doi: 10.18632/oncotarget.12284
  4. Mustacchi G., De Laurentiis M. The role of taxanes in triple-negative breast cancer: Literature review. Drug Design, Development and Therapy. 2015;9:4303–4318. doi: 10.2147/DDDT.S86105
  5. Pennisi A., Kieber-Emmons T., Makhoul I., Hutchins L. Relevance of Pathological Complete Response after Neoadjuvant Therapy for Breast Cancer. Breast Cancer : Basic and Clinical Research. 2016;10. doi: 10.4137/BCBCR.S33163
  6. Saha T., Lukong K.E. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Frontiers in Oncology. 2022;12. doi: 10.3389/fonc.2022.856974
  7. Modi A., Roy D., Sharma S., Vishnoi J.R., Pareek P., Elhence P., Sharma P., Purohit P. ABC transporters in breast cancer: Their roles in multidrug resistance and beyond. Journal of Drug Targeting. 2022;30(9):927–947. doi: 10.1080/1061186X.2022.2091578
  8. Cui H., Zhang A.J., Chen M., Liu J.J. ABC Transporter Inhibitors in Reversing Multidrug Resistance to Chemotherapy. Current Drug Targets. 2022;16(12):1356–1371. doi: 10.2174/1389450116666150330113506
  9. Liu X. ABC Family Transporters. In: Drug Transporters in Drug Disposition, Effects and Toxicity. Eds.: Liu X., Pan G. Singapore: Springer, 2019. P. 13–100. doi: 10.1007/978-981-13-7647-4_2
  10. Pan H., Zheng Y., Pan Q., Chen H., Chen F., Wu J., Di D. Expression of LXR β, ABCA1 and ABCG1 in human triple negative breast cancer tissues. Oncology Reports. 2019;42(5):1869–1877. doi: 10.3892/or.2019.7279
  11. Chen J., Tang G. PIM-1 kinase: A potential biomarker of triple-negative breast cancer. OncoTargets and Therapy. 2019;12. doi: 10.2147/OTT.S212752
  12. Weng H.J., Tsai T.F. ABCB1 in dermatology: Roles in skin diseases and their treatment. Journal of Molecular Medicine. 2021;99:1527–1538. doi: 10.1007/s00109-021-02105-y
  13. Ding P., Gao Y., Wang J., Xiang H., Zhang C., Wang L., Ji G., Wu T. Progress and challenges of multidrug resistance proteins in diseases. Am. J. Cancer Res. 2022;12(10):4483–4501.
  14. Nedeljković M., Damjanović A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer – How We Can Rise to the Challenge. Cells. 2019;8(9):957. doi: 10.3390/cells8090957
  15. Goebel J., Chmielewski J., Hrycyna C.A. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: Future opportunities for structure-based drug design of inhibitors. Cancer Drug Resistance. 2021;4:784–804. doi: 10.20517/cdr.2021.19
  16. Wang J.Q., Wu Z.X., Yang Y., Teng Q.X., Li Y.D., Lei Z.N., Jani K.A., Kaushal N., Chen Z.S. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. Journal of Evidence-Based Medicine. 2021;14(3):232–256. doi: 10.1111/jebm.12434
  17. Fu Z., Wang L., Li S., Chen F., Au-Yeung K. K.W., Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Frontiers in Pharmacology. 2021;12:736323. doi: 10.3389/fphar.2021.736323
  18. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9. doi: 10.3389/fendo.2018.00402
  19. Khalid O., Philippe L. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Frontiers in Oncology. 2021;11. doi: 10.3389/fonc.2021.708765
  20. Zhao W., Hu J.X., Hao R.M., Zhang Q., Guo J.Q., Li Y.J., Xie N., Liu L.Y., Wang P.Y., Zhang C., Xie S.Y. Induction of microRNA-let-7a inhibits lung adenocarcinoma cell growth by regulating cyclin D1. Oncology Reports. 2018;40(4):1843–1854. doi: 10.3892/or.2018.6593
  21. Ninio-Many L., Hikri E., Burg-Golani T., Stemmer S.M., Shalgi R., Ben-Aharon I. MiR-125a Induces HER2 Expression and Sensitivity to Trastuzumab in Triple-Negative Breast Cancer Lines. Frontiers in Oncology. 2020;10:191. doi: 10.3389/fonc.2020.00191
  22. Pekarsky Y., Croce C.M. Role of miR-15/16 in CLL. Cell Death and Differentiation. 2015;22:6–11. doi: 10.1038/cdd.2014.87
  23. Jiang R., Chen X., Ge S., Wang Q., Liu Y., Chen H., Xu J., Wu J. MiR-21-5p Induces Pyroptosis in Colorectal Cancer via TGFBI. Frontiers in Oncology. 2021;10. doi: 10.3389/fonc.2020.610545
  24. Karasek P., Gablo N., Hlavsa J., Kiss I., Vychytilova-Faltejskova P., Hermanova M., Kala Z., Slaby O., Prochazka V. Pre-operative Plasma miR-21-5p Is a Sensitive Biomarker and Independent Prognostic Factor in Patients with Pancreatic Ductal Adenocarcinoma Undergoing Surgical Resection. Cancer Genomics & Proteomics. 2018;15(4):321–327. doi: 10.21873/cgp.20090
  25. Sticht C., Torre C. D. L., Parveen A., Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10). Article No. e0206239. doi: 10.1371/journal.pone.0206239
  26. Chen Y., Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Research. 2020;48:D127–D131. doi: 10.1093/nar/gkz757
  27. McGeary S.E., Lin K.S., Shi C.Y., Pham T.M., Bisaria N., Kelley G.M., Bartel D.P. The biochemical basis of microRNA targeting efficacy. Science. 2019;366(6472). doi: 10.1126/science.aav1741
  28. Miranda K.C., Huynh T., Tay Y., Ang Y.S., Tam W.L., Thomson A.M., Lim B., Rigoutsos I. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell. 2006;126(6):1203–1217. doi: 10.1016/j.cell.2006.07.031
  29. Friedrich M., Vaxevanis C.K., Biehl K., Mueller A., Seliger B. Targeting the coding sequence: Opposing roles in regulating classical and non-classical MHC class I molecules by miR-16 and miR-744. Journal for Immunotherapy of Cancer. 2020;8(1):e000396. doi: 10.1136/jitc-2019-000396
  30. Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Research. 2019;47:D155–D162. doi: 10.1093/nar/gky1141
  31. Antczak M., Popenda M., Zok T., Sarzynska J., Ratajczak T., Tomczyk K., Adamiak R.W., Szachniuk M. New functionality of RNAComposer: Application to shape the axis of miR160 precursor structure. Acta Biochimica Polonica. 2016;63(4). doi: 10.18388/abp.2016_1329
  32. Biesiada M., Pachulska-Wieczorek K., Adamiak R.W., Purzycka K.J. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods. 2016;103:120–127. doi: 10.1016/j.ymeth.2016.03.010
  33. Parisien M., Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature. 2008;452:51–55. doi: 10.1038/nature06684
  34. Singh K.P., Gupta S. 3D Modeling of Non-coding RNA Interactions. In: Systems Biology of MicroRNAs in Cancer. Eds.: Schmitz U., Wolkenhauer O., Vera-González J. Springer, 2022. P. 281–317. doi: 10.1007/978-3-031-08356-3_11
  35. Yan Y., Tao H., He J., Huang S.Y. The HDOCK server for integrated protein–protein docking. Nature Protocols. 2020;15:1829–1852. doi: 10.1038/s41596-020-0312-x
  36. Yuan S., Chan H.C.S., Hu Z. Using PyMOL as a platform for computational drug design. WIREs Computational Molecular Science. 2017;7(2. Article No. e1298. doi: 10.1002/wcms.1298
  37. Dahuja A., Kumar R.R., Sakhare A., Watts A., Singh B., Goswami S., Sachdev A., Praveen S. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiologia Plantarum. 2021;171(4):785–801. doi: 10.1111/ppl.13302
  38. Liu R., Chen Y., Liu G., Li C., Song Y., Cao Z., Li W., Hu J., Lu C., Liu Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death & Disease. 2020;11(9). doi: 10.1038/s41419-020-02998-6
  39. Behl T., Kaur I., Sehgal A., Kumar A., Uddin Md. S., Bungau S. The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer’s Disease. Molecular Neurobiology. 2021;58(4):1564–1582. doi: 10.1007/s12035-020-02211-x
  40. Yu W., Lei Q., Yang L., Qin G., Liu S., Wang D., Ping Y., Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. Journal of Hematology & Oncology. 2021;14:187. doi: 10.1186/s13045-021-01200-4
  41. Ganesan M., Kanimozhi G., Pradhapsingh B., Khan H.A., Alhomida A.S., Ekhzaimy A., Brindha G.R., Prasad N.R. Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Biomedicine & Pharmacotherapy. 2021;139:111632. doi: 10.1016/j.biopha.2021.111632
  42. Mohi-ud-Din R., Mir R.H., Mir P.A., Banday N., Shah A.J., Sawhney G., Bhat M.M., Batiha G.E., Potoo F.H. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Current Drug Metabolism. 2022;23(9):735–756. doi: 10.2174/1389200223666220817115003
  43. Domenichini A., Adamska A., Falasca M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochimica et Biophysica Acta (BBA) - General Subjects. 2019;1863:52–60. doi: 10.1016/j.bbagen.2018.09.019
  44. Feyzizadeh M., Barfar A., Nouri Z., Sarfraz M., Zakeri-Milani P., Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: Lessons for drug discovery. Expert Opinion on Drug Discovery. 2022;17(9):1013–1027. doi: 10.1080/17460441.2022.2112666
  45. Xia M., Zu X., Chen Z., Wen G., Zhong J. Noncoding RNAs in triple negative breast cancer: Mechanisms for chemoresistance. Cancer Letters. 2021;523:100–110. doi: 10.1016/j.canlet.2021.09.038
  46. Zang J., Lu D., Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. Journal of Neuroscience Research. 2020;98:87–97. doi: 10.1002/jnr.24356
  47. Tang H., Ma M., Dai J., Cui C., Si L., Sheng X., Chi Z., Xu L., Yu S., Xu T., et al. MiR-let-7b and miR-let-7c suppress tumourigenesis of human mucosal melanoma and enhance the sensitivity to chemotherapy. Journal of Experimental & Clinical Cancer Research. 2019;38:212. doi: 10.1186/s13046-019-1190-3
  48. De Santis C., Götte M. The Role of microRNA Let-7d in Female Malignancies and Diseases of the Female Reproductive Tract. International Journal of Molecular Sciences. 2021;22(14):359. doi: 10.3390/ijms22147359
  49. Mohi-Ud-Din R., Mir R.H., Mir P.A., Banday N., Shah A.J., Sawhney G., Bhat M.M., Batiha G.E., Pottoo F.H. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr. Drug Metab. 2022;23(9):735–756. doi: 10.2174/1389200223666220817115003
  50. Valinezhad O.A., Safaralizadeh R., Kazemzadeh-Bavili M. Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. International Journal of Genomics. 2014;2014:970607. doi: 10.1155/2014/970607
  51. Yuan J.H., Li W.X., Hu C., Zhang B. Upregulation of SNHG12 accelerates cell proliferation, migration, invasion and restrain cell apoptosis in breast cancer by enhancing regulating SALL4 expression via sponging miR-15a-5p. Neoplasma. 2020;67(4):861–870. doi: 10.4149/neo_2020_190808N731
  52. Zhang H.Y., Liang H.X., Wu S.H., Jiang H.Q., Wang Q., Yu Z.J. Overexpressed Tumor Suppressor Exosomal miR-15a-5p in Cancer Cells Inhibits PD1 Expression in CD8+T Cells and Suppresses the Hepatocellular Carcinoma Progression. Frontiers in Oncology. 2021;11:622263. doi: 10.3389/fonc.2021.622263
  53. Zheng Y., Luo M., Lü M., Zhou T., Liu F., Guo X., Zhang J., Kang M. Let-7c-5p Inhibits Cell Proliferation and Migration and Promotes Apoptosis via the CTHRC1/AKT/ERK Pathway in Esophageal Squamous Cell Carcinoma. OncoTargets and Therapy. 2020;13:11193–11209. doi: 10.2147/OTT.S274092
  54. Fu X., Mao X., Wang Y., Ding X., Li Y. Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cancer. Oncology Reports. 2017;38(3):1851–1856. doi: 10.3892/or.2017.5839
  55. Wang C., Xue H., Zhao R., Sun Z., Gao X., Qi Y., Wang H., Xu J., Deng L., Li G. RGS16 regulated by let-7c-5p promotes glioma progression by activating PI3K-AKT pathway. Frontiers of Medicine. 2023;17:143–155. doi: 10.1007/s11684-022-0929-y
  56. Chirshev E., Oberg K.C., Ioffe Y.J., Unternaehrer J.J. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clinical and Translational Medicine. 2019;8(1):e24. doi: 10.1186/s40169-019-0240-y
  57. Zhang Y., Tie Q., Bao Z., Shao Z., Zhang L. Inhibition of miR-15a-5p Promotes the Chemoresistance to Pirarubicin in Hepatocellular Carcinoma via Targeting eIF4E. Computational and Mathematical Methods in Medicine. 2021;2021:6468405. doi: 10.1155/2021/6468405
  58. Muriithi W., Macharia L.W., Heming C.P., Echevarria J.L., Nyachieo A., Filho P.N., Neto V.M.. ABC transporters and the hallmarks of cancer: Roles in cancer aggressiveness beyond multidrug resistance. Cancer Biology & Medicine. 2020;17(2):253–269. doi: 10.20892/j.issn.2095-3941.2019.0284
  59. Hashemi S.M., Balouchi A., Al-Mawali A., Rafiemanesh H., Rezaie-Keikhaie K., Bouya S., Dehghan B., Farahani M.A. Health-related quality of life of breast cancer patients in the Eastern Mediterranean region: a systematic review and meta-analysis. Breast Cancer Research and Treatment. 2019;174:585–596. doi: 10.1007/s10549-019-05131-0
Table of Contents Original Article
Math. Biol. Bioinf.
2023;18(1):128-144
doi: 10.17537/2023.18.128
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2024