Russian version English version
Volume 6   Issue 1   Year 2011
Kiselev S.S., Ozoline O.N.

Structure-Specific Modules as Indicators of Promoter DNA in Bacterial Genomes

Mathematical Biology & Bioinformatics. 2011;6(1):39-52.

doi: 10.17537/2011.6.39.


  1. Shavkunov KS, Masulis IS, Tutukina MN, Deev AA, Ozoline ON. Gains and unexpected lessons in genome-scale promoter mapping. Nucleic Acids Res. 2009;37:4419-4431. doi: 10.1093/nar/gkp490
  2. Ozoline ON, Deev AA. Predicting antisense RNAs in the genomes of Escherichia coli and Salmonella typhimurium using promoter-search algorithm PlatProm. J. Bioinf. Comput. Biol. 2006;4:443-454.
  3. Ozoline ON, Purtov YuA, Brok-Volchanski AS, Deev AA, Lukyanov VI. Specifity of DNA-protein interactions within transcription complexes of Escherichia coli. Molecular biology. 2004;38:663-673. doi: 10.1023/B:MBIL.0000043936.76060.39
  4. Available at: (accessed 20 January 2011).
  5. Schroder J, Jochmann N, Rodionov DA, Tauch A. The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics. 2010;11:Article No. 12. doi: 10.1186/1471-2164-11-12
  6. Brocker M, Schaffer S, Mack C, Bott M. Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J. Bacteriol. 2009;191:3869-3880. doi: 10.1128/JB.00113-09
  7. Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G. Promoters of Corynebacterium glutamicum. J. Biotechnol. 2003;104:311-323.
  8. Youn J-W, Jolkver E, Kramer R, Marin K, Wendisch VF. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J. Bacteriol. 2008;190:6458-6466.
  9. Jungwirth B, Emer D, Brune I, Hansmeier N, Puhler A, Eikmanns BJ, Tauch A. Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol. Lett. 2008;281:190-197.
  10. Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M. Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J. Bacteriol. 2006;188:724-732. doi: 10.1128/JB.188.2.724-732.2006
  11. Han SO, Inui M, Yukawa H. Transcription of Corynebacterium glutamicum genes involved in tricarboxylic acid cycle and glyoxylate cycle. J. Mol. Microbiol. Biotechnol. 2008;15:264-276.
  12. Brune I, Werner H, Huser AT, Kalinowski J, Puhler A, Tauch A. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics. 2006;7:Article No. 21. doi: 10.1186/1471-2164-7-21
  13. Barreiro C, Gonzalez-Lavado E, Patek M, Martin J-F. Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J. Bacteriol. 2004;186:413-417.
  14. Suda M, Teramoto H, Imamiya T, Inui M, Yukawa H. Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation. Appl. Microbiol. Biotechnol. 2008;81:505-513.
  15. Van Ooyen J, Emer D, Bussmann M, Botta M, Eikmanns BJ, Eggeling L. Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. J. Biotechnol. 2011 (in press). doi: 10.1016/j.jbiotec.2010.07.004
  16. Han SO, Inui M, Yukawa H. Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology. 2007;153:2190-2202. doi: 10.1099/mic.0.2006/004366-0
  17. Schweitzer J-E, Stolz M, Diesveld R, Etterich H, Eggeling L. The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR. J. Biotechnol. 2009;139:214-221.
  18. Koch DJ, Ruckert C, Albersmeier A, Huser AT, Tauch A, Puhler A, Kalinowski J. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol. Microbiol. 2005;58:480-494.
  19. Nishimura T, Vertes AA, Shinoda Y, Inui M, Yukawa H. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl. Microbiol. Biotechnol. 2007;75:889-897.
  20. Barruiso-Iglesias M, Barreiro C, Flechoso F, Martin JF. Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology. 2006;152:11-21. doi: 10.1099/mic.0.28383-0
  21. Nentwich SS, Brinkrolf K, Gaigalat L, Huser AT, Rey DA, Mohrbach T, Marin K, Puhler A, Tauch A, Kalinowski J. Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology. 2009;155:150-164. doi: 10.1099/mic.0.020388-0
  22. Brune I, Jochmann N, Brinkrolf K, Huser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Puhler A, Tauch A. The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum. J. Bacteriol. 2007;189:2720-2733. doi: 10.1128/JB.01876-06
  23. Engels V, Wendisch VF. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 2007;189:2955-2966. doi: 10.1128/JB.01596-06
  24. Tanaka Y, Okai N, Teramoto H, Inui M, Yukawa H. Regulation of expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R. Microbiology. 2008;154:264-274. doi: 10.1099/mic.0.2007/008862-0
  25. Brinkrolf K, Ploger S, Solle S, Brune I, Nentwich SS, Huser AT, Kalinowski J, Puhler A, Tauch A. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology. 2008;154:1068-1081. doi: 10.1099/mic.0.2007/014001-0
  26. Krug A, Wendisch VF, Bott M. Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. J. Biol. Chem. 2005;280:585-595.
  27. Nakunst D, Larisch C, Huser AT, Tauch A, Puhler A, Kalinowski J. The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J. Bacteriol. 2007;189:4696-4707. doi: 10.1128/JB.00382-07
  28. Zemanova M, Kaderabkova P, Patek M, Knoppova M, Silar R, Nesvera J. Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. FEMS Microbiol. Lett. 2008;279:195-201.
  29. Jochmann N, Kurze A-K, Czaja LF, Brinkrolf K, Brune I, Huser AT, Hansmeier N, Puhler A, Borovok I, Tauch A. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology. 2009;155:1459-1477. doi: 10.1099/mic.0.025841-0
  30. Dietrich C, Nato A, Bost B, Le Marechal P, Guyonvarch A. Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum. Microbiology. 2009;155:1360-1375. doi: 10.1099/mic.0.022004-0
  31. Gao Y-G, Suzuki H, Itou H, Zhou Y, Tanaka Y, Wachi M, Watanabe N, Tanaka I, Yao M. Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization. Nucl. Acids Res. 2008;36:7110-7123.
  32. Engels S, Schweitzer J-E, Ludwig C, Bott M, Schaffe S. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH. Mol. Microbiol. 2004;52:285-302.
  33. Letek M, Ordonez E, Fiuza M, Honrubia-Marcos P, Vaquera J, Gil JA, Mateos LM. Characterization of the promoter region of ftsZ from Corynebacterium glutamicum and controlled overexpression of FtsZ. Int. Microbiol. 2007;10:271-282.
  34. Schreiner ME, Fiur D, Holatko J, Patek M, Eikmanns BJ. E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J. Bacteriol. 2005;187:6005-6018. doi: 10.1128/JB.187.17.6005-6018.2005
  35. Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertes AA, Yukawa H. Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology. 2007;153:2491-2504. doi: 10.1099/mic.0.2006/005587-0
  36. Zhao KX, Huang Y, Chen X, Wang NX, Liu SJ. PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum. J. Bacteriol. 2010;192:1565-1572. doi: 10.1128/JB.01338-09
  37. Okibe N, Suzuki N, Inui M, Yukawa H. Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett. Appl. Microbiol. 2010;50:173-178.
  38. Frunzke J, Engels V, Hasenbein S, Gatgens C, Bott M. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol. 2008;67:305-322.
  39. Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J. Bacteriol. 2006;188:409-423. doi: 10.1128/JB.188.2.409-423.2006
  40. Ruckert C, Milse J, Albersmeier A, Koch DJ, Puhler A, Kalinowski J. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. BMC Genomics. 2008;9:Article No. 483. doi: 10.1186/1471-2164-9-483
  41. Cramer A, Eikmanns BJ. RamA, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to negative autoregulation. J. Mol. Microbiol. Biotechnol. 2007;12:51-59.
  42. Youn J-W, Jolkver E, Kramer R, Marin K, Wendisch VF. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J. Bacteriol. 2009;191:5480-5488.
  43. Schreiner ME, Riedel C, Holatko J, Patek M, Eikmanns BJ. Pyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects. J. Bacteriol. 2006;188:1341-1350. doi: 10.1128/JB.188.4.1341-1350.2006
  44. Itou H, Okada U, Suzuki H, Yao M, Wachi M, Watanabe N, Tanaka I. The CGL2612 protein from Corynebacterium glutamicum is a drug resistance-related transcriptional repressor: structural and functional analysis of a newly identified transcription factor from genomic DNA analysis. J. Biol. Chem. 2005;280:38711-38719.
  45. Barth E, Barcelo MA, Klackta C, Benz R. Reconstitution experiments and gene deletions reveal the existence of two-component major cell wall channels in the genus Corynebacterium. J. Bacteriol. 2010;192:786-800. doi: 10.1128/JB.01142-09
  46. Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ. Acetate metabolism and its regulation in Corynebacterium glutamicum. J. Biotechnol. 2003;104:99-122.
  47. Auchter M, Arndt A, Eikmanns BJ. Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J. Biotechnol. 2009;140:84-91.
  48. Arndt A, Eikmanns BJ. The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J. Bacteriol. 2007;189:7408-7416.
  49. Ruckert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Puhler A, Kalinowski J. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics. 2005;6:Article No. 121. doi: 10.1186/1471-2164-6-121
  50. Georgi T, Engels V, Wendisch VF. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J. Bacteriol. 2008;190:963-971. doi: 10.1128/JB.01147-07
  51. Hertz GZ, Stormo GD. Escherichia coli promoter sequences: analysis and prediction. Methods in Enzymology. 1996;273:30-42. doi: 10.1016/S0076-6879(96)73004-5
  52. Brok-Volchanski AS, Masulis IS, Shavkunov KS, Lukyanov VI, Purtov YuA, Kostyanicina EG, Deev AA, Ozoline ON. Predicting sRNA genes in the genome of E.coli by the promoter-search algorithm PlatProm. In: Bioinformatics of Genome Regulation and Structure II. Kolchanov N, Hofestaedt R, Milanesi L, eds. New York: Springer, 2006:11-20.
  53. Ozoline ON, Deev AA, Arkhipova MV, Chasov VV, Travers A. Proximal transcribed regions of bacterial promoters have non-random distribution of A/T-tracts. Nucl. Acids Res. 1999;27:4768-4774. doi: 10.1093/nar/27.24.4768
  54. Ozoline ON, Deev AA, Trifonov EN. DNA bendability — a novel feature in E.coli promoter recognition. J. Biomol. Struct. Dynam. 1999;16:825-831.
  55. Chasov VV, Deev AA, Masulis IS, Ozoline ON. Distribution and functional significance of /-tracts in promoter sequences of Escherichia coli. Molecular biology. 2002;36:537-542. doi: 10.1023/A:1019812712980
  56. Ozoline ON, Deev AA, Arkhipova MV. Noncanonical sequence elements in the promoter structure. Cluster analysis of promoters recognized by Escherichia coli RNA polymerase. Nucleic Acids Res. 1997;25:4703-4709. doi: 10.1093/nar/25.23.4703
  57. Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J. Mol. Biol. 1986;188:415-431.
  58. Huerta AM, Collado-Vides J. Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J. Mol. Biol. 2003;333:261-278.
  59. Huerta A, Francino MP, Morett E, Collado-Vides J. Selection for unequal densities of s70 promoter-like signals in different regions of large bacterial genomes. PLoS Genetics. 2006;2:Article No. e185. doi: 10.1371/journal.pgen.0020185
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2011.6.39
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References Translation into English
Math. Biol. Bioinf.
doi: 10.17537/2011.6.t1

Full text (eng., pdf)


  Copyright IMPB RAS © 2005-2024