Russian version English version
Volume 6   Issue 2   Year 2011
Medvedev A.E.

A two-phase model of blood flow in large and small blood vessels

Mathematical Biology & Bioinformatics. 2011;6(2):228-249.

doi: 10.17537/2011.6.228.


  1. Pedli T. Gidrodinamika krupnykh krovenosnykh sosudov. Moscow, 1983; 400 p. (in Russ.). Translation of: Pedley TJ. The Fluid Mechanics Of Large Blood Vessels.
  2. Levtov VA, Regirer SA, Shadrina NKh. Reologiia krovi (Hemorheology). Moscow, 1982; 272 p. (in Russ.).
  3. Sharan M, Popel AS. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology. 2001;38:415-428.
  4. Pries AR, Secomb TW. Blood Flow in Microvascular Networks. In: Handbook of Physiology: Microcirculation. Tuma RF, Dura WN, Ley K Eds. Academic Press, 2008; p. 3-36. doi: 10.1016/B978-0-12-374530-9.00001-2
  5. Moyers-Gonzalez M, Owens RG, Fang J. A non-homogeneous constitutive model for human blood. Part. 1. Model derivation and steady flow. J. Fluid Mech. 2008;617:327-453. doi: 10.1017/S002211200800428X
  6. Pan W, Caswell B, Karniadakis GE. A low-dimensional model for the red blood cell. Soft Matter. 2010;6:4366-4376. doi: 10.1039/c0sm00183j
  7. Karo K, Pedli T, Shroter R, Sid U. Mekhanika krovoobrashcheniia. Moscow, 1981; 624 p. (in Russ.). Translation of: Caro CG, Pedley TJ, Schroter RC, Seed WA. Mechanics of the Circulation.
  8. Makovei N. Gidravlika bureniia (Drilling Hydraulics). Moscow, 1986; 536 p. (in Russ.).
  9. Nigmatulin RI. Dinamika mnogofaznykh sred (Dynamics of Multiphase Media): Part I. Moscow, 1987; 464 p. (in Russ.).
  10. Nigmatulin RI. Dinamika mnogofaznykh sred (Dynamics of Multiphase Media): Part II. Moscow, 1987; 360 p. (in Russ.).
  11. Fung YC. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993; 568 p. doi: 10.1007/978-1-4757-2257-4
  12. Pries AR, Secomb TW, Gaehtgens P, Gross JF. Blood flow in microvascular networks. Experiments and simulation. Circular Research. 1990;67:826-834. doi: 10.1161/01.RES.67.4.826
  13. Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. Heart Circ. Physiol. 1992;263:H1770-H17787.
  14. Pries AR, Kanzow G, Gaehtgens P. Microphotometric determination of hematocrit in small vessels. Am. J. Physiol. 1983;245:H167-H177.
  15. Albrecht KH, Gaehtgens P, Pries A, Heuser M. The Fahraeus effect in narrow capillaries (i.d. 3.3 to 11.0 μm). Microvascular Research. 1979;18(1):33-47. doi: 10.1016/0026-2862(79)90016-5
  16. Gavril'chak IN, Ignat'ev VV, Kidalov VN, Rymkevich PP, Solov'ev VN, Khadartsev A.A. Vestnik novykh meditsinskikh tekhnologii (Herald of New Medical Technologies). 2006;XIII(1):6-9 (in Russ.).
  17. Ignat'ev VV, Kidalov VN, Rymkevich PP, Samoilov VO. Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova (Russian Journal Of Physiology, formely I.M. Sechenov Physiological Journal). 1996;82(5-6):72-78 (in Russ.).
  18. Ignat'ev VV, Kidalov VN, Khadartsev AA, Siasin NI. Vestnik novykh meditsinskikh tekhnologii (Herald of New Medical Technologies). 2007;X(1):6-11 (in Russ.).
  19. Long DS, Smith ML, Pries AR, Ley K, Damiano ER. Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc. Natl. Acad. Sci. USA. 2004;101(27):10060-10065. doi: 10.1073/pnas.0402937101
  20. Damiano ER, Long DS, Smith ML. Estimation of viscosity profiles using velocimetry data from parallel flows of linearly viscous fluids: application to microvascular haemodynamics. J. Fluid Mech. 2004;512:1-19.
  21. Loitsianskii LG. Mekhanika zhidkosti i gaza (Mechanics of Fluids and Gases). Moscow, 1978; 736 p. (in Russ.).
  22. Georgievskii DV. Vestn. Mosk. un-ta. Ser. 1, Matematika. Mekhanika (Moscow University Mechanics Bulletin). 2006;5:51-54 (in Russ.).
  23. Landau LD, Lifshits EM. Teoreticheskaia fizika. T. VI. Gidrodinamika (Theoretical Physics. Vol. VI. Hydrodynamics). Moscow, 1986; 736 p. (in Russ.).
  24. Jones RT. Blood flow. Annual Review of Fluid Mechanics. 1969;1:223-2447. doi: 10.1146/annurev.fl.01.010169.001255
  25. Sinaiskii EG, Lapiga EIa, Zaitsev IuV. Separatsiia mnogofaznykh mnogokomponentnykh sistem (Separation of Multiphase Multicomponent Systems). Moscow, 2002; 621 p. (in Russ.).
  26. Medvedev AE. Blood motion in arteries with a deformable wall. In: XIII International Conference on the Methods of Aerophysical Research. Fomin VM ed. Novosibirsk: Publ. House “Parallel”, 2007; p. 115-122.
  27. Medvedev AE, Samsonov VI, Fomin VM. In: Sistema krovoobrashcheniia i arterial'naia gipertoniia: biofizicheskie i genetiko-fiziologicheskie mekhanizmy, matematicheskoe i komp'iuternoe modelirovanie (Cardiovascular System and Arterial Hypertension: Biophysical, Genetic and Physiological Mechanisms, Mathematical and Computer Modeling). Ivanova LN, Blokhin AM, Markel AL eds. Novosibirsk, 2008; p. 80-105 (in Russ.).
  28. Nair PK. Simulation of oxygen transport in capillary. Ph. D Thesis. Rice University, 1988. 309 p.
  29. Nair PK, Huang NS, Hellums JD. Olson J.S. A simple model for prediction of oxygen transport rates by flowing blood in large capillaries. Microvascular Research. 1990;39(2):203-211. doi: 10.1016/0026-2862(90)90070-8
  30. Bugliarello G, Sevilla J. Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology. 1970;85-107.
  31. Reinke W, Gaehtgens P, Johnson PC. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am. J. Physiol. 1987;253:H540-H547.
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2011.6.228
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024