Russian version English version
Volume 6   Issue 2   Year 2011
References

  1. Blinov L, Fridkin V, Palto S, Bune A, Dowben P, Ducharme S. Physics-Uspekhi. 2000;43(3):243-257. doi: 10.1070/PU2000v043n03ABEH000639
  2. Bune AV, Fridkin VM, Ducharme S, Blinov LM, Palto SP, Sorokin AV, Yudin SG, Zlatkin A. Nature (London). 1998;391:874. doi: 10.1038/36069
  3. Qu H, Yao W, Zhang J, Dusharme S, Dowben PA, Sorokin AV, Fridkin VM. Appl. Phys. Lett. 2003;82:4322-4324.
  4. Kliem H, Tardos-Morgane R. J. Phys. D: Appl. Phys. 2005;38:1860-1868.
  5. Tadros-Morgane R, Kliem H. J. Phys. D: Appl. Phys. 2006;39:4872-4877.
  6. Gruverman A, Kholkin A. Rep. Prog. Phys. 2006;69:2443-2474.
  7. Tolstousov A, Gaynutdinov R, Tadros-Morgane R, Judin S, Tolstikhina A, Kliem H, Ducharme S, Fridkin V. Ferroelectrics. 2007;354:99-105. doi: 10.1080/00150190701454669
  8. Li D, Bonneli DA. Ferroelectric Lithography. In: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. Kalinin SV and Gruverman A Eds. New York: Springer, 2007:906-928.
  9. Rodriguez B, Jesse S, Baddorf A, Kalinin S. Phys. Rev. Lett. 2006;96:237602. doi: 10.1103/PhysRevLett.96.237602
  10. Rodrigeuz BJ, Jesse S, Kalinin S, Kim J, Ducharme S, Fridkin VM. Appl. Phys. Lett. 2007;90:122904.
  11. Bystrov VS, Bdikin IK, Kiselev DA, Yudin SG, Fridkin VM, Kholkin AL. J. Phys. D: Appl. Phys. 2007;40:4571-4577.
  12. Kang SJ, Bae I, Shin YJ, Park YJ, Huh J, Park S-M., Kim H-C, Park C. NANO Letters. 2011;11:138-144. doi: 10.1021/nl103094e
  13. Egusa S, Wang Z, Chocat N, Ruff ZM, Stolyarov AM, Shemuly D, Sorin F, Rakich PT, Joannopoulos JD, Fink Y. Nature Materials. 2010:643-648. doi: 10.1038/NMAT2792. doi: 10.1038/nmat2792
  14. Hu Z, Tian M, Nysten B, Jonas AM. Nature Materials. 2009;8:62-67. doi: 10.1038/nmat2339
  15. Amer S, Badawy W. Current Pharmaceutical Biotechnology. 2005;6:57.
  16. Bystrov VS, Bystrova NK, Paramonova EV, Vizdrik G, Sapronova AV, Kuehn M, Kliem H, Kholkin AL. J. Phys: Condens. Matter. 2007;19:456210.
  17. Bystrov V, Bystrova N, Kiselev D, Paramonova E, Kuehn M, Kliem H, Kholkin A. Integrated Ferroelectrics. 2008;99:31-40. doi: 10.1080/10584580802107510
  18. Hereida A, Machado M, Bdikin I, Gracio J, Yudin S, Fridkin VM, Delgadillo I, Kholkin AL. J. Phys. D: Appl. Phys. 2010;43(33):335301.
  19. Callegari B, Belangero WD. Analysis of the interface formed among the poli(viniilidene) fluoride (piezoelectric and nonpiezoelectric) and the bone tissue of rats. Acta Ortop.Bras. 2004;12(3):160-166.
  20. Mehta R. The hip gets smart. Materials World Magazine, 01 Apr 2010. Available at: http://www.iom3.org/news/hip-and-smart-biomaterials (accessed 17 July 2011).
  21. Bystrov VS, Bystrova NK, Paramonova EV, Dekhtyar YuD. Interaction of charged hydroxyapatite and living cells. I. Hydroxyapatite polarization properties. Mathematical biology and bioinformatics. 2009;4(2):7-11. Available at: http://www.matbio.org/downloads_en/Bystrov_en2009(4_7).pdf (accessed 17 July 2011).
  22. PERCERAMICS. Available at: http://www.perceramics.vip.lv/ (accessed 17 July 2011).
  23. Dekhtyar Yu, Bystrov V, Khlusov I, Polyaka N, Sammons R, Tyulkin F. Hydroxyapatite Surface Nanoscaled characterization and Electrical Potential F Functionalization to Engineer Osteoblasts Attachment and Generate Bone Tissue. In: The Society For Biomaterials 2011 Annual Meeting & Exposition (April 13-16, 2011, Orlando, Florida, USA). A 519.
  24. Lines ME, Glass AM. Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press: Oxford, 1979.
  25. Minc RI, Mil’man II, Kryuk VI. Physics-Uspekhi (Russian). 1976;19(8):697-707.
  26. Dekhtyar YuD, Vinyarskaya YuA. Exoelectron analysis of amorphous silicon. J. Appl. Phys. 1994;75(8):4201-4207.
  27. Dekhtyar YuD Photo-, dual- and exoelectron spectroscopy to characterize nanostructures. In: Functionalized Nanoscale Materials, Devices and Systems NATO Science for Peace and Security Series B: Physics and Biophysics. Vaseashta A, Mihailescu IN. Eds. Springer Science + Business Media B, 2008:169-183.
  28. Marcus MA. Ferroelectrics. 1982;40:29-41. doi: 10.1080/00150198208210593
  29. Furukawa T. Ferroelectrics. 1984;57:63-72. doi: 10.1080/00150198408012752
  30. Kimura K, Ohigashi H. Jpn. J. Appl. Phys. 1986;25:383.
  31. Newnham RE, Sundar V, Yumnirun R, Su J, Zhang QM. J. Phys. Chem. B. 1997;101:10141-10150.
  32. Xiao J, Zhou X, Zhang QM, Dowben PA. J. Appl. Phys. 2009;106:044105.
  33. Choi J, Dowben PA, Pebley S. Bune AV, Ducharme S. Phys. Rev. Lett. 1998;80(6):1328-1331. doi: 10.1103/PhysRevLett.80.1328
  34. Elashmawi IS, Hakeem NA. Polymer Engineering and Science. 2008;48(5):895-901. doi: 10.1002/pen.21032
  35. Elashmawi IS, Abdelrazek EM, Ragab HM, Hakeem NA. Physica B. 2010;405:94-98. doi: 10.1016/j.physb.2009.08.037
  36. Mandal D, Henkel K, Muller K, Schmeiber D. Bull. Mater. Sci. 2010;33(4):457-461.
  37. Ortiz E, Cuan A, Badillo C, Cortes-Romero CM, Wang Q, Norena L. Int. J Quantum Chem. 2010;110:2411-2417.
  38. Arbuzov VI. Fundamentals of radiation optic materials. St-Peterburg, 2008. 284 p.(in Russ.).
  39. Hypercube 2002 HyperChem. Tools for Molecular Modeling. Available at: http://www.hyper.com/?tabid=360 (accessed 17 July 2011).
  40. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC. J. Chem. Phys. 1998;109:6264-6271.
  41. Becke AD. Phys Rev A. 1988;38:3098-3100. doi: 10.1103/PhysRevA.38.3098
  42. Johnson BG, Gill PM, Pople JA. J. Chem. Phys. 1993;98:5612-5626.
  43. Perdew JP, Chevary JA, Volsko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Phys. Rev. B. 1992;46:6671-6687.
  44. Zhao Y, Truhlar DG. Accounts of Chemical Research. 2007;41(2):157-167. doi: 10.1021/ar700111a
  45. Stewart JJP. J. Mol. Model. 2008;14:499-535.
  46. Su H, Strachan A, Goddard WAIII. Phys. Rev. B. 2004;70:064101.
  47. Guo SS, Sun XH, Wang SX, Xu S, Zhao X-Z, Chan HLW. Thermal and structural properties of high-energy electron irradiated Poly(Vinylidene Fluoride-Trifluoroethylene) copolymer blends. Mater. Chem. and Phys. 2005;91:348-354.
  48. Guo SS, Sun CL, Wu TS, Zhao XZ, Chan HLW. Thermal study on structural changes and phase transition in high-energy electron-irradiated blends of P(VDF-TrFE) copolymers. J. Mater. Sci. 2007;42:1184-1189.
  49. Li W, Meng Q, Zheng Y, Zhang Z, Xia W, Xu Z. Appl. Phys. Lett. 2010;96:192905.
  50. Gregorio RJr, Botta MM. J Polymer Sci: Part B: Polymer Physics. 1998;36:403-414.
  51. Duan C-G, Mei WN, Harfy JR, Ducharme S, Choi J, Dowben PA. Europhys. Lett. 2003;61(1):81-87.
  52. Dowben PA, Xiao J, Xu B, Sokolov A, Doudin B. Applied Surface Sciences. 2008;254(14):4238-4244. doi: 10.1016/j.apsusc.2008.01.062
  53. Fridkin VM. Photoferroelectrics. Springer-Verlag: NY- Berlin, 1979. doi: 10.1007/978-3-642-81351-1
  54. Kliem H. Advances in Solid State Physics. 2003;43:861-874. doi: 10.1007/978-3-540-44838-9_61
Table of Contents Original Article
Bystrov V.S., Paramonova E.V., Dekhtyar Y., Katashev A., Polyaka N., Bystrova A.V., Sapronova A.V., Fridkin V.M., Kliem H., Kholkin A.L. Computational Studies of PVDF and P(VDF-TrFE) Nanofilms Polarization During Phase Transition Revealed by Emission Spectroscopy. Ìàthematical biology and bioinformatics. 2011;6(2):273-297. doi: 10.17537/2011.6.273
(published in Russian)

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References Translation into English
Bystrov V.S., Paramonova E.V., Dekhtyar Y., Katashev A., Polyaka N., Bystrova A.V., Sapronova A.V., Fridkin V.M., Kliem H., Kholkin A.L. Computational Studies of PVDF and P(VDF-TrFE) Nanofilms Polarization During Phase Transition Revealed by Emission Spectroscopy. Ìàthematical biology and bioinformatics. 2011;6(2):t14-t35. doi: 10.17537/2011.6.t14

Full text (eng., pdf)

 

  Copyright IMPB RAS © 2005-2025