Russian version English version
Volume 6   Issue 2   Year 2011
Kornoushenko Yu.V. , Anishchenko I.V., Tuzikov A.V., Andrianov A.M.

Determination of the invariant structural elements for the third variable domain of the HIV-1 gp120 protein by molecular modeling

Mathematical Biology & Bioinformatics. 2011;6(2):298-311.

doi: 10.17537/2011.6.298.


  1. Hartley O, Klasse PJ, Sattentau QJ, Moore JP. V3: HIV’s Switch-Hitter. AIDS Res. Hum. Retroviruses. 2005;21:171-189. doi: 10.1089/aid.2005.21.171
  2. Sirois S, Sing T, Chou KC. HIV-1 gp120 V3 loop for structure-based drug design. Curr. Protein Pept. Sci. 2005;6:413-422.
  3. Andrianov AM. Human immunodeficiency virus-1 gp120 V3 loop for anti-acquired immune deficiency syndrome drug discovery: computer-aided approaches to the problem solving. Expert Opin. Drug. Discov. 2011;6:419-435. doi: 10.1517/17460441.2011.560603
  4. Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, Wyatt R, Kwong PD. Structure of a V3-containing HIV-1 gp120 core. Science. 2005;310:1025-1028. doi: 10.1126/science.1118398
  5. Huang CC, Lam SN, Acharya P, Tang M, Xiang SH, Hussan SS, Stanfield RL, Robinson J, Sodroski J, Wilson IA, Wyatt R, Bewley CA, Kwong PD. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science. 2007;317:1930-1934. doi: 10.1126/science.1145373
  6. Chen L, Do Kwon Y, Zhou T, Wu X, O’Dell1 S, Cavacini L, Hessell AJ, Pancera M, Tang M, Xu L, Yang Z-Y, Zhang M-Y, Arthos J, Burton DR, Dimitrov DS, Nabel GJ, Posner MR, Sodroski J, Wyatt R, Mascola JR, Kwong PD. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science. 2009;326:1123-1127. doi: 10.1126/science.1175868
  7. Rini JM, Stanfield RL, Stura EA, Salinas PA, Profy AT, Wilson IA. Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop. Proc. Natl. Acad. Sci. USA. 1993;90:6325-6329. doi: 10.1073/pnas.90.13.6325
  8. Ghiara JB, Stura EA, Stanfield RL, Profy AT, Wilson IA. Crystal structure of the principal neutralization site of HIV-1. Science. 1994;264:82-85. doi: 10.1126/science.7511253
  9. Stanfield RL, Cabezas E, Satterthwait AC, Stura EA, Profy AT, Wilson IA. Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing Fabs. Structure. 1999;7:131-142. doi: 10.1016/S0969-2126(99)80020-3
  10. Stanfield RL, Ghiara JB, Saphire EO, Profy AT, Wilson IA. Recurring conformation of the human immunodeficiency virus type 1 gp120 V3 loop. Virology. 2003;315:159-173. doi: 10.1016/S0042-6822(03)00525-7
  11. Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, Wilson IA. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447 52D. Structure. 2004;12:193-204. doi: 10.1016/j.str.2004.01.003
  12. Ding J, Smith AD, Geisler SC, Ma X, Arnold GF, Arnold E. Crystal structure of a human rhinovirus that displays part of the HIV-1 V3 loop and induces neutralizing antibodies against HIV-1. Structure. 2002;10:999-1011. doi: 10.1016/S0969-2126(02)00793-1
  13. Stanfield RL, Gorny MK, Zolla-Pazner S, Wilson IA. Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity. J. Virol. 2006;80:6093-6105. doi: 10.1128/JVI.00205-06
  14. Bell CH, Pantophlet R, Schiefner A, Cavacini LA, Stanfield RL, Burton DR, Wilson IA. Structure of antibody F425-B4e8 in complex with a V3 peptide reveals a new binding mode for HIV-1 neutralization. J. Mol. Biol. 2008;375:969-978.
  15. Dhillon AK, Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, Wilson IA. Structure determination of an anti-HIV-1 Fab 447-52D-peptide complex from an epitaxially twinned data set. Acta Crystallogr., Sect D. 2008;64:792-802. doi: 10.1107/S0907444908013978
  16. Burke V, Williams C, Sukumaran M, Kim S, Li H, Wang X, Gorny M, Zolla-Pazner S, Kong X. Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. Structure. 2009;17:1538-1546. doi: 10.1016/j.str.2009.09.012
  17. Totrov M, Jiang X, Kong XP, Cohen S, Krachmarov C, Salomon A, Williams C, Seaman MS, Cardozo T, Gorny MK, Wang S, Lu S, Pinter A, Zolla-Pazner S. Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold. Virology. 2010;405:513-523. doi: 10.1016/j.virol.2010.06.027
  18. Jiang X, Burke V, Totrov M, Williams C, Cardozo T, Gorny MK, Zolla-Pazner S, Kong XP. Conserved structural elements in the V3 crown of HIV-1 gp120. Nat. Struct. Mol. Biol. 2010;17:955-961.
  19. Catasti P, Fontenot JD, Bradbury EM, Gupta G. Local and global structural properties of the HIVMN V3 loop. J. Biol. Chem. 1995;270:2224-2232.
  20. Gupta G, Anantharamaiah GM, Scott DR, Eldridge JH, Myers G. Solution structure of the V3 loop of a Thailand HIV isolate. J. Biomol. Struct. Dynam. 1993;11:345-366.
  21. Vu HM, de Lorimier R, Moody MA, Haynes BF, Spicer LD. Conformational preference of a chimeric peptide HIV-1 immunogen from the C4-V3 domains of gp120 envelope protein of HIV CANOA based on solution NMR: comparison to a related immunogenic peptide from HIV-1 RF. Biochemistry. 1996;35:5158-5165. doi: 10.1021/bi952665x
  22. Vranken WF, Budesinsky M, Martins JC. Conformational features of a synthetic cyclic peptide corresponding to the complete V3 loop of the RF HIV-1 strain in water and water/trifluoroethanol solutions. Eur. J. Biochem. 1996;236:100-108.
  23. Sarma AV, Raju TV, Kunwar AC. NMR study of the peptide present in the principal neutralizing determinant (PND) of HIV-1 envelope glycoprotein gp120. J. Biochem. Biophys. Methods. 1997;34:83-98.
  24. Tolman RL, Bednarek MA, Johnson BA, Leanza W, Marburg S, Underwood DJ, Emini EA, Conley AJ. Cyclic V3 loop-related HIV-1 conjugate vaccines. Int. J. Pept. Protein Res. 1993;41:455-466. doi: 10.1111/j.1399-3011.1993.tb00465.x
  25. Jelinek R, Terry TD, Gesell JJ, Malik P, Perham RN, Opella S. NMR structure of the principal neutralizing determinant of HIV-1 displayed in filamentous bacteriophage coat protein. J. Mol. Biol. 1997;266:649-655.
  26. Vranken WF, Fant F, Budesinsky M, Borremans FAM. Conformational model for the consensus V3 loop of the envelope protein gp120 of HIV-1 in a 20% trifluoroethanol/water solution. Eur. J. Biochem. 2001;268:2620-2628.
  27. Andrianov AM. Global and local structural properties of the principal neutralizing determinant of the HIV-1 envelope protein gp120. J. Biomol. Struct. Dynam. 1999;16:931-953.
  28. Andrianov AM. Local structural properties of the V3 loop of Thailand HIV-1 isolate. J. Biomol. Struct. Dynam. 2002;19:973-990. doi: 10.1080/07391102.2002.10506801
  29. Andrianov AM, Sokolov YuA. Structure and polymorphism of the principal neutralization site of Thailand HIV-1 isolate. J. Biomol. Struct. Dynam. 2003;20:603-614.
  30. Andrianov AM, Sokolov YuA. 3D structure model of the principal neutralizing epitope of Minnesota HIV-1 isolate. J. Biomol. Struct. Dynam. 2004. V.21:577-590.
  31. Andrianov AM. Dual spatial folds and different local structures of the HIV-1 immunogenic crown in various virus isolates. J. Biomol. Struct. Dynam. 2004;22:159-170.
  32. Andrianov AM, Veresov VG. Determination of structurally conservative amino acids of the HIV-1 protein gp120 V3 loop as promising targets for drug design by protein engineering approaches. Biochemistry (Moscow). 2006;71:906-914. doi: 10.1134/S000629790608013X
  33. Andrianov AM. Study on Conformational Homology of the HIV-1 gp120 Protein V3 Loop. Structural Analysis of the HIV-RF and HIV-Thailand Viral Strains. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2007;1:125-130.
  34. Andrianov AM, Veresov VG. Structural analysis of the HIV-1 gp120 V3 loop: application to the HIV-Haiti isolates. J. Biomol. Struct. Dynam. 2007;24:597-608.
  35. Andrianov AM. Determining the Invariant Structure Elements of the HIV-1 Variable V3 Loops: Insight into the HIV-MN and HIV-Haiti Isolates. J. Biomol. Struct. Dynam. 2008;26:247-254. doi: 10.1080/07391102.2008.10507240
  36. Andrianov AM. Computational anti-AIDS drug design based on the analysis of the specific interactions between immunophilins and the HIV-1 gp120 V3 loop. Application to the FK506-binding protein. J. Biomol. Struct. Dynam. 2008;26:49-56. doi: 10.1080/07391102.2008.10507222
  37. Andrianov AM. Immunophilins and HIV-1 V3 loop for structure-based anti-AIDS drug design. J. Biomol. Struct. Dynam. 2009;26:445-454.
  38. Andrianov AM, Anishchenko IV. Computational Model of the HIV-1 Subtype A V3 Loop: Study on the Conformational Mobility for Structure-Based Anti-AIDS Drug Design. J. Biomol. Struct. Dynam. 2009;27:179-194.
  39. Andrianov AM, Anishchenko IV. Computer-assisted anti-AIDS drug development: cyclophilin B against the HIV-1 subtype A V3 loop. Health. 2010;2:56-65.
  40. LaRosa GJ, Davide JP, Weinhold K, Waterbury JA, Profy AT, Lewis JA, Langlois AJ, Dressman GR, Boswell RN, Shadduk P, Holley LH, Karplus M, Bolognesi DP, Matthews TJ, Emini EA, Putney SD. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science. 1990;249:932-935. doi: 10.1126/science.2392685
  41. Kartikeyan S, Bharmal RN, Tiwari RP, Bisen PS. HIV and AIDS: Basic Elements and Priorities. Netherlands: Springer, 2007:428.
  42. Andrianov AM, Anishchenko IV, Tuzikov AV. Discovery of novel promising targets for anti-AIDS drug developments by computer modeling: application to the HIV-1 gp120 V3 loop. J. Chem. Inf. Model. 2011;51:2760-2767.
  43. Smith JA, Pease LJ. Reverse turns in peptides and proteins. CRC Crit. Rev. Biochem. 1980;8:315-399.
  44. 28 December 2011).
  45. Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779-815.
  46. Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Science. 2000;9:1753-1773. doi: 10.1110/ps.9.9.1753
  47. Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ. Assignment of intra-chain disulfide bond and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in chinese hamster ovary cells. J. Biol. Chem. 1990;265:10373-10382.
  48. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA. AMBER 10. San Francisco: University of California, 2008.
  49. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993;26:283-291. doi: 10.1107/S0021889892009944
  50. Hutchinson EG, Thornton JM. PROMOTIF – a program to identify and analyze structural motifs in proteins. Protein Sci. 1996;5:212-220.
  51. Sherman SA, Johnson ME. Derivation of locally accurate spatial protein structure from NMR data. Prog. Biophys. Mol. Biol. 1993;59:285-339.
  52. Ablameiko SV, Abramov SM, Anishchenko VV, Medvedev SV, Paramonov NN, Chizh OP. Superkomp'iuternye konfiguratsii SKIF (SKIF Supercomputer Configurations). Minsk, 2005: 170 p. ISBN 985-6744-19-9. (in Russ.)
  53. Liitsola K, Laukkanen T, Mashkilleyson N, Brummer-Korvenkontio H, Vanhatalo J, Leinikki P, Salminen MO, Tashkinova I, Momot O, Korovina G, Smolskaja T, Chaplinskas S. HIV-1 genetic subtype A/B recombinant strain causing an explosive epidemic in injecting drug users in Kaliningrad. AIDS. 1998;12:1907-1919. doi: 10.1097/00002030-199814000-00023
  54. Eremin VF, Gasich EL, Sasinovich SV. A new unique recombinant HIV-1 isolated from child born from HIV-infected mother. AIDS Res Hum Retroviruses. 2011;27:1323-1326. doi: 10.1089/aid.2011.0112
  55. Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, Farzadegan H, Gupta P, Rinaldo CR, Learn GH, He X, Huang X-L, Mullins JI. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J. Virology. 1999;73:10489-10502.
  56. Dunbrack RLJr, Karplus M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J. Mol. Biol. 1993;230:543-74.
  57. de Parseval A, Bobardt MD, Chatterji A, Chatterji U, Elder JH, David G, Zolla-Pazner S, Farzan M, Lee TH, Gallay PA. A highly conserved arginine in gp120 governs HIV-1 binding to both syndecans and CCR5 via sulfated motifs. J. Biol. Chem. 2005;280:39493-39504.
  58. Wang WK, Dudek T, Zhao YJ, Brumblay HG, Essex M, Lee TH. CCR5 coreceptor utilization involves a highly conserved arginine residue of HIV type 1 gp120. Proc. Natl. Acad. Sci. U S A. 1998;95:5740-5745. doi: 10.1073/pnas.95.10.5740
  59. Ogert RA, Lee MK, Ross W, Buckler-White A, Martin MA, Cho MW. N-linked glycosylation sites adjacent to and within the V1/V2 and the V3 loops of dualtropic human immunodeficiency virus type 1 isolate DH12 gp120 affect coreceptor usage and cellular tropism. J. Virol. 2001;75:5998-6006. doi: 10.1128/JVI.75.13.5998-6006.2001
  60. McCaffrey RA, Saunders C, Hensel M, Stamatatos L. N-linked glycosylation of the V3 loop and the immunologically silent face of gp120 protects human immunodeficiency virus type 1 SF162 from neutralization by anti-gp120 and anti-gp41 antibodies. J. Virol. 2004;78:3279-3295. doi: 10.1128/JVI.78.7.3279-3295.2004
  61. Teeraputon S, Louisirirojchanakul S, Auewarakul P. N-linked glycosylation in C2 region of HIV-1 envelope reduces sensitivity to neutralizing antibodies. Viral Immunol. 2005;18:343-353. doi: 10.1089/vim.2005.18.343
  62. Li Y, Rey-Cuille MA, Hu SL. N-linked glycosylation in the V3 region of HIV type 1 surface antigen modulates coreceptor usage in viral infection. AIDS Res. Hum. Retroviruses. 2001;17:1473-1479. doi: 10.1089/08892220152644179
  63. Malenbaum SE, Yang D, Cavacini L, Posner M, Robinson J, Cheng-Mayer C. The N-terminal V3 loop glycan modulates the interaction of clade A and B human immunodeficiency virus type 1 envelopes with CD4 and chemokine receptors. J. Virol. 2000;74:11008-11016. doi: 10.1128/JVI.74.23.11008-11016.2000
  64. Pollakis G, Kang S, Kliphuis A, Chalaby MI, Goudsmit J, Paxton WA. N-linked glycosylation of the HIV type-1 gp120 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization. J. Biol. Chem. 2001;276:13433-13441.
  65. Polzer S, Dittmar MT, Schmitz H, Meyer B, Muller H, Krausslich HG, Schreiber M. Loss of N-linked glycans in the V3-loop region of gp120 is correlated to an enhanced infectivity of HIV-1. Glycobiology. 2001;11:11-19. doi: 10.1093/glycob/11.1.11
  66. Ivanoff LA, Looney DJ, McDanal C, Morris JF, Wong-Staal F, Langlois AJ, Petteway SRJr, Matthews TJ. Alteration of HIV-1 infectivity and neutralization by a single amino acid replacement in the V3 loop domain. AIDS Res. Hum. Retroviruses. 1991;7:595-603. doi: 10.1089/aid.1991.7.595
  67. Lee SK, Pestano GA, Riley J, Hasan AS, Pezzano M, Samms M, Park KJ, Guyden J, Boto WM. A single point mutation in HIV-1 V3 loop alters the immunogenic properties of rgp120. Arch. Virol. 2000;145:2087-2103.
  68. Hu Q, Napier KB, Trent JO, Wang Z, Taylor S, Griffin GE, Peiper SC, Shattock RJ. Restricted variable residues in the C-terminal segment of HIV-1 V3 loop regulate the molecular anatomy of CCR5 utilization. J. Mol. Biol. 2005;350:699-712.
  69. Chandrasekhar K, Profy AT, Dyson HJ. Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120. Biochemistry. 1991;30:9187-9194. doi: 10.1021/bi00102a009
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2011.6.298
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024