Russian version English version
Volume 16   Issue 1   Year 2021
Lakhno V.D., Vinnikov A.V.

Molecular devices based on DNA

Mathematical Biology & Bioinformatics. 2021;16(1):115-135.

doi: 10.17537/2021.16.115.

References

  1. Dragon A. Polymerase chain reaction. Sci. Am. 1998;278(5):112. doi: 10.1038/scientificamerican0598-112
  2. Winfree E., Liu F., Wenzler L.A., Seeman N.C. Design and self-assembly of two-dimensional DNA crystals. Nature. 1998;394(6693):539–544. doi: 10.1038/28998
  3. Seeman N.C. Nanotechnology and the double helix. Sci. Am. 2004;290(6). doi: 10.1038/scientificamerican0604-64
  4. Wang M.D., Yin H., Landick R., Gelles J., Block S.M. Stretching DNA with optical tweezers. Biophyz. J. 1997;72(3):1335–1346. doi: 10.1016/S0006-3495(97)78780-0
  5. Bustamante C., Keller D.J. Scanning Force Microscopy. Biology Physics Today. 1995;48:32. doi: 10.1063/1.881478
  6. Strick T.R., Allemand J.-F., Bensimon D., Bensimon A., Croguette V. The elasticity of a single supercoiled DNA molecule. Science. 1996;271(5257):1835–1837. doi: 10.1126/science.271.5257.1835
  7. Bockelmanan U., Essevaz-Roulet B., Heslot F. DNA strand separation studied by single molecule force measurements. Phys. Rev. E. 1998;58:2386. doi: 10.1103/PhysRevE.58.2386
  8. Braun E., Eichen Y., Sivan U., Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 1998;391:775–778. doi: 10.1038/35826
  9. Eley D.D., Spivey D.I. Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state. Trans. Faraday Soc. 1962;58:411–415. doi: 10.1039/TF9625800411
  10. Roth S.R. One-Dimensional Metals, 1st ed. Weinheim :VCH, 1995:31–35.
  11. Warman J.M., de Haas M. P., Rupprecht A DNA: a molecular wire? Chem. Phys. Lett. 1996;249:319–322. doi: 10.1016/0009-2614(95)01429-2
  12. Introduction to radiobiology. Eds. Dutreix J., Wambersie A., Tubiana M. London: CRC Press, 1990.
  13. Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol. Ther. 1992;53:127–166. doi: 10.1016/0163-7258(92)90047-4
  14. Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915
  15. Loft S., Poulsen H.E. Cancer risk and oxidative DNA damage in man. J. Mol. Med. 1996;74:297–312. doi: 10.1007/BF00207507
  16. Gros. F. Colloque “Risques cancérogènes dus aux rayonnements ionisants” 14–16 mai 1998. In: Comptes Rendus De l'Academie Des Sciences. Serie III, Sciences De La Vie. Eds. Cros F., Tubiana M., Sarasin A., Masse R., Maustacchi E., Früry-Herrard A., Rosa J. 1999;322(2–3):87–88. doi: 10.1016/S0764-4469(99)80028-6
  17. O’Neill P., Fielden E.M. 2 - Primary Free Radical Processes in DNA. Advances in Radiation Biology. 1993;17:53. doi: 10.1016/B978-0-12-035417-7.50005-2
  18. Retel J., Hoebee B., Braun J.E.F., Lutgernik J.T., Akker E., Handayani Wanamarta A., Joenje H., Lafleur M.V.M. Mutational specificity of oxidative DNA damage. Mutations Res. 1993;299:165–182. doi: 10.1016/0165-1218(93)90094-T
  19. Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 1994;63:915–948. doi: 10.1146/annurev.bi.63.070194.004411
  20. Turro N.J., Barton J.K. Paradigms, supermolecules, electron transfer and chemistry at a distance. What's the problem? The science or the paradigm? J. Biol. Inorg. Chem. 1998;3:201–209. doi: 10.1007/s007750050222
  21. Lewis F.D., Wu T., Liu X. , R.L. Letsinger, S.R. Greenfield, S.E. Miller, M.R. Wasielewski. Dynamics of Photoinduced Charge Separation and Charge Recombination in Synthetic DNA Hairpins with Stilbenedicarboxamide Linkers. J. Am. Chem. Soc. 2000;122(12):2889–2902. doi: 10.1021/ja993689k
  22. Murphy C.J., Arkin M.A., Jenkins Y., Ghatlia N.D., Bossmann S.H., Turro N.J., Barton J.K. Long-range photoinduced electron transfer through a DNA helix. Science. 1993;262:1025–1029. doi: 10.1126/science.7802858
  23. Hall D.B., Holmlin R.E., Barton J.K. Oxidative DNA damage through long-range electron transfer. Nature. 1996;382:731–735. doi: 10.1038/382731a0
  24. Kelley S.O., Jackson N.M., Hall M.G., Barton J.K. Long Range Electron Transfer through DNA Films. Angew. Chem. Int. Ed. 1999;38:941–945. doi: 10.1002/(SICI)1521-3773(19990401)38:7<941::AID-ANIE941>3.0.CO;2-7
  25. Brun A.M., Harriman A. J. Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases. J. Am. Chem. Soc. 1992;114:3656–3660. doi: 10.1021/ja00036a013
  26. Mead T.J., Kayem J.F. Electron Transfer through DNA: Site-Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors. Angew. Chem. Int. Ed. Engl. 1995;34:352–354. doi: 10.1002/anie.199503521
  27. Draganescu A., Tullius T.D. Targeting of nucleic acids by iron complexes. Metal Ions in Biological Systems. 1996;33:453–484.
  28. Brun A.M., Harriman A. Energy- and electron-transfer processes involving paladium phorphyrins bound to DNA. J. Am. Chem. Soc. 1994;116:10383–10393. doi: 10.1021/ja00102a004
  29. Harriman A. Electron Tunneling in DNA. Angew. Chem. Int. Ed. 1999;38:945–949. doi: 10.1002/(SICI)1521-3773(19990401)38:7<945::AID-ANIE945>3.0.CO;2-S
  30. Lincoln P., Tuite E., Norden B. Short-Circuiting the Molecular Wire: Cooperative Binding of Δ-[Ru(phen)2dppz]2+ and Δ-[Rh(phi)2bipy]3+ to DNA. J. Am. Chem. Soc. 1997;119:1454-1455. doi: 10.1021/ja9631965
  31. Olson E. J.C., Hu D., Hörmann A., Barlbara P.F. Quantitative Modeling of DNA-Mediated Electron Transfer between Metallointercalators. J. Phys. Chem. B. 1997;101:299–303. doi: 10.1021/jp963109v
  32. Lewis F. D., Letsinger R.L Distance-dependent photoinduced electron transfer in synthetic single-strand and hairpin DNA. J. Biol. Inorg. Chem. 1998;3:215–221. doi: 10.1007/s007750050224
  33. Krider E.S., Mead T.J. Electron transfer in DNA: covalent attachment of spectroscopically unique donor and acceptor complexes. J. Biol. Inorg. Chem. 1998;3:222–225. doi: 10.1007/s007750050225
  34. Boon E.M., Barton J.K Charge transport in DNA. Curr. Opin. Stuct. Biol. 2002;12:320–329. doi: 10.1016/S0959-440X(02)00327-5
  35. Henderson P.T., Jonnes D., Hampikin G., Kan Y., Schuster G.B. Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. Proc. Nat. Acad. Sci. USA. 1999;96:8353–8358. doi: 10.1073/pnas.96.15.8353
  36. Lewis F.D., Wu T., Zhang Y., Letsinger R.L., Greenfeld S.R., Wasielewski M.R. Distance-dependent electron transfer in DNA hairpins. Science. 1997;277:673–676. doi: 10.1126/science.277.5326.673
  37. Meggers E., Michel-Beyerle M.E., Giese B. Sequence Dependent Long Range Hole Transport in DNA. J. Am. Chem. Soc. 1998;120:12950–12955. doi: 10.1021/ja983092p
  38. Giese B., Wessely S., Spormann M., Lindeman U., Meggers E., Michel-Begerle M.E. On the Mechanism of Long Range Electron Transfer through DNA. Angew. Chem. Int. Ed. 1999;38:996–998. doi: 10.1002/(SICI)1521-3773(19990401)38:7<996::AID-ANIE996>3.0.CO;2-4
  39. Bixon M., Giese B., Wessly S., Langenbacher. T., Michel-Beyerle M.E., Jortner J. Long-range charge hopping in DNA. PNAS. 1999;96:11713–11716. doi: 10.1073/pnas.96.21.11713
  40. Giese B., Amaudrut J., Köhler A.K., Spormann M., Wessely S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature. 2001;412:318–320. doi: 10.1038/35085542
  41. Giese B. Long-distance charge transport in DNA: the hopping mechanism. Acc. Chem. Res. 2000;33:631–636. doi: 10.1021/ar990040b
  42. Porath D, Bezryadin A., de Vries S., Dekker C. Direct measurement of electrical transport through DNA molecules. Nature. 2000;403:635–638. doi: 10.1038/35001029
  43. Fink H.W., Schönenberger C. Electrical conduction through DNA molecules. Nature. 1999;398:407–410. doi: 10.1038/18855
  44. Kasumov A.Y., Kociak M., Gueron S., Reulet B., Volkov V.T., Klinov D.V., Bouchiat H. Proximity-induced superconductivity in DNA. Science. 2001;291:280–282. doi: 10.1126/science.291.5502.280
  45. Watanabe H., Manabe C., Shigematsu T., Shimotani K., Shimizu M. Single molecule DNA device measured with triple-probe atomic force microscope. Appl. Phys. Lett. 2001;79:2462–2464. doi: 10.1063/1.1408604
  46. Shigematsu T., Shimotani K., Manabe C., Watanabe H., Shimizu M. Transport properties of carrier-injected DNA. J. Chem. Phys. 2003;118:4245–4252. doi: 10.1063/1.1541608
  47. Storm A.J., van Noort J., de Vries S., Dekker C. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl. Phys. Lett. 2001;79:3881–3883. doi: 10.1063/1.1421086
  48. Cai I., Tabata H., Kawai T. Self-assembled DNA networks and their electrical conductivity. Appl. Phys. Lett. 2000;77:3105–3106. doi: 10.1063/1.1323546
  49. Lee H.Y., Tanaka H., Otsuka Y., Yoo K.H., Lee J., Kawai T. Control of electrical conduction in DNA using oxygen hole doping. Appl. Phys. Lett. 2002;80:1670. doi: 10.1063/1.1456972
  50. Tabata H., Cai L.T., Gu J.H., Tanaka S., Otsuka Y., Sacho Y., Taniguchi M., Kawai T. Toward the DNA electronics. Sinth. Met. 2003;133:469–472. doi: 10.1016/S0379-6779(02)00386-7
  51. Rakitin A., Aich P., Papadopoulos C., Kobzar Y., Vedeneev A.S., Lee J.S., Xu J.M. Metallic Conduction through Engineered DNA: DNA Nanoelectronic Building Blocks. Phys. Rev. Lett. 2001;86:3670–3673. doi: 10.1103/PhysRevLett.86.3670
  52. Aich P., Labiuk S.L., Tari L.W., Delbaere L.J.T., Roesler W.J., Falk K.J., Steer R.P., Lee J.S. M-DNA: A complex between divalent metal ions and DNA which behaves as a molecular wire. J. Mol. Biol. 1999;294:477–485. doi: 10.1006/jmbi.1999.3234
  53. Wetting S.D., Wood D.O., Lee J.S. Thermodynamic investigation of M-DNA: a novel metal ion–DNA complex. Journal of Inorganic Biochemistry. 2003;94:94–99. doi: 10.1016/S0162-0134(02)00624-4
  54. Li C.Z., Long Y.T., Kraatz H.B., Lee J.S. Electrochemical Investigations of M-DNA Self-Assembled Monolayers on Gold Electrodes. J. Phys. Chem. B. 2003;107:2291–2296. doi: 10.1021/jp026792w
  55. Yoo K.H., Ha D.H., Lee J.O., Park J.W., Kim J., J.J. Kim, H.-Y. Lee, T. Kawai, Han Yong Choi. Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules. Phys. Rev. Lett. 2001;87:198102. doi: 10.1103/PhysRevLett.87.198102
  56. Okahata Y., Kobayashi T., Tanaka K., Shimomura M. Anisotropic Electric Conductivity in an Aligned DNA Cast Film. J. Am. Chem. Soc. 1998;120:6165–6166. doi: 10.1021/ja980165w
  57. Braun E., Eichen Y., Sivan U., Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 1998;391:775–778. doi: 10.1038/35826
  58. Gu Q., Cheng C., Gonela R., Suryanarayanan S., Anabathula S., Dai K., Haynie D.T. DNA nanowire fabrication. Nanotechnology. 2006;17:R14–R25. doi: 10.1088/0957-4484/17/1/R02
  59. Lee J.S., Latimer J.P., Reid R.S. A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal ions. Biochem. Cell. Biol. 1993;71:162–168. doi: 10.1139/o93-026
  60. Lee S.W., Mao C., Flynn C.E., Belcher A.M. Ordering of quantum dots using genetically engineered viruses. Science. 2002;296:892–895. doi: 10.1126/science.1068054
  61. Flynn C.E., Lee S.W., Peelle B.R., Belcher A.M. Viruses as vehicles for growth, organization and assembly of materials. Acta Materialia. 2003;51:5867–5880. doi: 10.1016/j.actamat.2003.08.031
  62. Yoo P.J., Nam K.T., Qi J., Lee S.-K., Park J., Belcher A.M., Hammond P.T. Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Materials. 2006;5:234–240. doi: 10.1038/nmat1596
  63. Nam K.T., Kim D.-W., Yoo P.J., Chiang C.-Y., Meethong N., Hammond P.T., Chiang Y.-M., Belcher A.M. Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes. Science. 2006;316:885–888. doi: 10.1126/science.1122716
  64. Frontiers in Biochip Technology. Eds. Dr. Wan-Li Xing, Dr. Jing Cheng. Springer, 2006. 358 p.
  65. Microarrays: Volume I: Synthesis Methods. Ed. Jang B. Rampal. Humana Press, 2007. 452 p. (Methods in Molecular Biology; Vol. 381).
  66. Marchand G., Delattre C., Campagnolo R., Pouteau P., Ginot F. Electrical detection of DNA hybridization based on enzymatic accumulation confined in nanodroplets. Analytical Chem. 2005;77:5189–5195. doi: 10.1021/ac0505066
  67. Gooding J.J. Electrochemical DNA hybridization biosensors. Electroanalysis. 2002;14:1149–1156. doi: 10.1002/1521-4109(200209)14:17<1149::AID-ELAN1149>3.0.CO;2-8
  68. Palecek E., Jelen F. Electrochemistry of Nucleic Acids and Development of DNA Sensors. Crit. Rev. Anal. Chem. 2002;3:261–270. doi: 10.1080/10408340290765560
  69. Wang J. Electrochemical nucleic acid biosensors. Anal. Chim. Acta. 2002;469:63–71. doi: 10.1016/S0003-2670(01)01399-X
  70. Drummond T.G., Hill M.G., Barton J.K. Electrochemical DNA sensors. Nature Biotechnology. 2003;21:1192–1199. doi: 10.1038/nbt873
  71. Hahm J., Lieber C.M. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Letters. 2004;4(1):51–54. doi: 10.1021/nl034853b
  72. Popovich N.D., Thorp H.H. New strategies for electrochemical nucleic acid detection. Interface. 2002;11:30–34. doi: 10.1149/2.F05024IF
  73. Demers L.M., Clinger D.S., Park S.-J, Li Z., Chung S.-W., Mirkin C.A. Direct Patterning of Modified Oligonucleotides on Metals and Insulators by Dip-Pen Nanolithography. Science. 2002;296:1836–1838. doi: 10.1126/science.1071480
  74. Ginger D.S., Zhang H., Mirkin C.A. The evolution of dip-pen nanolithography. Angewandte Chem. 2004;43:30–45. doi: 10.1002/anie.200300608
  75. Seeman N.C. An overview of structural DNA nanotechnology. Mol. Biotech. 2007;37:246–257. doi: 10.1007/s12033-007-0059-4
  76. Seeman N.C. From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 2005;30:119-125. doi: 10.1016/j.tibs.2005.01.007
  77. Seeman N.C., Lukeman P.S. Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Rep. Progr. Phys. 2005;68:237–270. doi: 10.1088/0034-4885/68/1/R05
  78. Lakhno V.D., Sultanov V.B. On the Possibility of Electronic DNA Nanobiochips. JCT. 2007:3. doi: 10.1021/ct6003438
  79. Luo Y., Collier C.P., Jeppesen J.O., Nielsen K.A., DeIonno E., Ho G., Perkins J., Tseng H.‐R., Yamamoto T., Stoddart J.F., Heath J.R. Two-dimensional molecular electronics circuits. Chem. Phys. Chem. 2002;3:519–525. doi: 10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2
  80. Green J.E., Choi J.W., Boukai A., Bunimovich Y., Johnston-Halperin E., DeIonno E., Luo Y., Sheriff B.A., Xu K., Shik Shin Y., Tseng H.-R., Stoddart J.F., Heath J.R. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter. Nature. 2007;445:414–417. doi: 10.1038/nature05462
  81. Tseng R.J., Tsai C., Ma L., Onyang J., Ozkan C.S., Yang Y. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nature Nanotechnology. 2006;1:72–77. doi: 10.1038/nnano.2006.55
  82. Aviram A., Ratner M.A. Molecular Rectifiers. Chem. Phys. Lett. 1974;29:277–283. doi: 10.1016/0009-2614(74)85031-1
  83. Callier C.P., Wong E.W., Belobradsky M., Raymo F.M., Stoddart J.F., Kuekes P.J., Williams R.S., Heath J.R. Electronically configurable molecular-based logic gates. Science. 1999;285:391–394. doi: 10.1126/science.285.5426.391
  84. Zhou C., Deshpande M.R., Reed M.A.Nanoscale metal/self-assembled monolayer/metal heterostructures. Appl. Phys. Lett. 1997;71:611–613. doi: 10.1063/1.120195
  85. Porath D., Cuniberty G., Felice R.D. Charge Transport in DNA-Based Devices. Top. Curr. Chem. 2004;237:183–227. doi: 10.1007/b94477
  86. Lakhno V.D., Sultanov V.B. Electronic XOR logic gate based on DNA. Math. Biol. Bioinf. 2006;1:123. doi: 10.17537/2006.1.123
  87. Otsuka Y., Lee H.Y., Gu J.H., Lee J.-O., Yoo K.-H., Tanaka H., Tabata H., Kawai T. Influence of Humidity on the Electrical Conductivity of Synthesized DNA Film on Nanogap Electrode. Jpn. J. Appl. Phys. 2002;41:891–894. doi: 10.1143/JJAP.41.891
  88. Gu J.H., Cai L., Tanaka S., Otsuka Y., Tabata H., Kawai T. Electric conductivity of dye modified DNA films with and without light irradiation in various humidities. J. Appl. Phys. 2002;92:2816–2820. doi: 10.1063/1.1498959
  89. Taniguchi M., Lee H.Y., Tanaka H., Kawai T. Electrical Properties of Poly(dA)·Poly(dT) and Poly(dG)·Poly(dC) DNA Doped with Iodine Molecules. Jpn. J. Appl. Phys. 2003;42. L.215–L216. doi: 10.1143/JJAP.42.L215
  90. Goldhaber-Gordon D.J., Montemerlo M.S., Love J.C., Optiteck G.J., Ellenbogen J.C. Overview of nanoelectronic devices. IEEE. 1997;85(4):521–540. doi: 10.1109/5.573739
  91. Lent C.C., Tongaw P.D. A device architecture for computing with quantum dots. Proc. IEEE. 1997;85:542–557. doi: 10.1109/5.573740
Table of Contents Original Article
Math. Biol. Bioinf.
2021;16(1):115-135
doi: 10.17537/2021.16.115
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024